Abstract
The atmospheric chemistry of CCl2FCH2CF3 (HFCF-234fb) was examined using FT-IR/relative-rate methods. Hydroxyl radical and chlorine atom rate coefficients of k(CCl2FCH2CF3+OH)= (2.9 ± 0.8) × 10−15 cm3 molecule–1 s–1 and k(CCl2FCH2CF3+Cl)= (2.3 ± 0.6) × 10−17 cm3 molecule–1 s–1 were determined at 297 ± 2 K. The OH rate coefficient determined here is two times higher than the previous literature value. The atmospheric lifetime for CCl2FCH2CF3 with respect to reaction with OH radicals is approximately 21 years using the OH rate coefficient determined in this work, estimated Arrhenius parameters and scaling it to the atmospheric lifetime of CH3CCl3. The chlorine atom initiated oxidation of CCl2FCH2CF3 gives C(O)F2 and C(O)ClF as stable secondary products. The halogenated carbon balance is close to 80% in our system. The integrated IR absorption cross-section for CCl2FCH2CF3 is 1.87 × 10−16 cm molecule−1 (600–1600 cm−1) and the radiative efficiency was calculated to 0.26 W m−2 ppb1. A 100-year Global Warming Potential (GWP) of 1460 was determined, accounting for an estimated stratospheric lifetime of 58 years and using a lifetime-corrected radiative efficiency estimation.
Original language | English |
---|---|
Journal | International Journal of Chemical Kinetics |
Volume | 55 |
Issue number | 2 |
Pages (from-to) | 63-71 |
Number of pages | 9 |
ISSN | 0538-8066 |
DOIs | |
Publication status | Published - 2023 |
Bibliographical note
Publisher Copyright:© 2022 Wiley Periodicals LLC.
Keywords
- GWP
- HCFC-234fb
- IR spectrum
- kinetics and oxidation products