TY - JOUR
T1 - Attenuation Correction of Long Axial Field-of-View Positron Emission Tomography Using Synthetic Computed Tomography Derived from the Emission Data
T2 - Application to Low-Count Studies and Multiple Tracers
AU - Montgomery, Maria Elkjær
AU - Andersen, Flemming Littrup
AU - d’Este, Sabrina Honoré
AU - Overbeck, Nanna
AU - Cramon, Per Karkov
AU - Law, Ian
AU - Fischer, Barbara Malene
AU - Ladefoged, Claes Nøhr
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2023
Y1 - 2023
N2 - Recent advancements in PET/CT, including the emergence of long axial field-of-view (LAFOV) PET/CT scanners, have increased PET sensitivity substantially. Consequently, there has been a significant reduction in the required tracer activity, shifting the primary source of patient radiation dose exposure to the attenuation correction (AC) CT scan during PET imaging. This study proposes a parameter-transferred conditional generative adversarial network (PT-cGAN) architecture to generate synthetic CT (sCT) images from non-attenuation corrected (NAC) PET images, with separate networks for [18F]FDG and [15O]H2O tracers. The study includes a total of 1018 subjects (n = 972 [18F]FDG, n = 46 [15O]H2O). Testing was performed on the LAFOV scanner for both datasets. Qualitative analysis found no differences in image quality in 30 out of 36 cases in FDG patients, with minor insignificant differences in the remaining 6 cases. Reduced artifacts due to motion between NAC PET and CT were found. For the selected organs, a mean average error of 0.45% was found for the FDG cohort, and that of 3.12% was found for the H2O cohort. Simulated low-count images were included in testing, which demonstrated good performance down to 45 s scans. These findings show that the AC of total-body PET is feasible across tracers and in low-count studies and might reduce the artifacts due to motion and metal implants.
AB - Recent advancements in PET/CT, including the emergence of long axial field-of-view (LAFOV) PET/CT scanners, have increased PET sensitivity substantially. Consequently, there has been a significant reduction in the required tracer activity, shifting the primary source of patient radiation dose exposure to the attenuation correction (AC) CT scan during PET imaging. This study proposes a parameter-transferred conditional generative adversarial network (PT-cGAN) architecture to generate synthetic CT (sCT) images from non-attenuation corrected (NAC) PET images, with separate networks for [18F]FDG and [15O]H2O tracers. The study includes a total of 1018 subjects (n = 972 [18F]FDG, n = 46 [15O]H2O). Testing was performed on the LAFOV scanner for both datasets. Qualitative analysis found no differences in image quality in 30 out of 36 cases in FDG patients, with minor insignificant differences in the remaining 6 cases. Reduced artifacts due to motion between NAC PET and CT were found. For the selected organs, a mean average error of 0.45% was found for the FDG cohort, and that of 3.12% was found for the H2O cohort. Simulated low-count images were included in testing, which demonstrated good performance down to 45 s scans. These findings show that the AC of total-body PET is feasible across tracers and in low-count studies and might reduce the artifacts due to motion and metal implants.
KW - attenuation correction
KW - deep learning
KW - LAFOV
KW - motion correction
KW - PET/CT
U2 - 10.3390/diagnostics13243661
DO - 10.3390/diagnostics13243661
M3 - Journal article
C2 - 38132245
AN - SCOPUS:85180644807
VL - 13
JO - Diagnostics
JF - Diagnostics
SN - 2075-4418
IS - 24
M1 - 3661
ER -