Automated Medical Coding on MIMIC-III and MIMIC-IV: A Critical Review and Replicability Study

Joakim Edin, Alexander Junge, Jakob D. Havtorn, Lasse Borgholt, Maria Maistro, Tuukka Ruotsalo, Lars Maaløe

Research output: Chapter in Book/Report/Conference proceedingArticle in proceedingsResearchpeer-review

9 Citations (Scopus)
7 Downloads (Pure)

Abstract

Medical coding is the task of assigning medical codes to clinical free-text documentation. Healthcare professionals manually assign such codes to track patient diagnoses and treatments. Automated medical coding can considerably alleviate this administrative burden. In this paper, we reproduce, compare, and analyze state-of-the-art automated medical coding machine learning models. We show that several models underperform due to weak configurations, poorly sampled train-test splits, and insufficient evaluation. In previous work, the macro F1 score has been calculated sub-optimally, and our correction doubles it. We contribute a revised model comparison using stratified sampling and identical experimental setups, including hyperparameters and decision boundary tuning. We analyze prediction errors to validate and falsify assumptions of previous works. The analysis confirms that all models struggle with rare codes, while long documents only have a negligible impact. Finally, we present the first comprehensive results on the newly released MIMIC-IV dataset using the reproduced models. We release our code, model parameters, and new MIMIC-III and MIMIC-IV training and evaluation pipelines to accommodate fair future comparisons.

Original languageEnglish
Title of host publicationSIGIR 2023 - Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval
PublisherAssociation for Computing Machinery, Inc.
Publication date2023
Pages2572-2582
ISBN (Electronic)9781450394086
DOIs
Publication statusPublished - 2023
Event46th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2023 - Taipei, Taiwan, Province of China
Duration: 23 Jul 202327 Jul 2023

Conference

Conference46th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2023
Country/TerritoryTaiwan, Province of China
CityTaipei
Period23/07/202327/07/2023
SponsorACM SIGIR

Bibliographical note

Publisher Copyright:
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

Keywords

  • Automated Medical Coding
  • MIMIC
  • Reproducibility

Cite this