Abstract
Meaning Representation (AMR) has been shown to be useful for many downstream tasks. In this work, we explore the use of AMR for legal and logical reasoning. Specifically, we investigate if AMR can help capture logical relationships on multiple choice question answering (MCQA) tasks. We propose neural architectures that utilize linearised AMR graphs in combination with pre-trained language models. While these models are not able to outperform text-only baselines, they correctly solve different instances than the text models, suggesting complementary abilities. Error analysis further reveals that AMR parsing quality is the most prominent challenge, especially regarding inputs with multiple sentences. We conduct a theoretical analysis of how logical relations are represented in AMR and conclude it might be helpful in some logical statements but not for others.
Original language | English |
---|---|
Title of host publication | Findings of the Association for Computational Linguistics: EMNLP 2022 |
Publisher | Association for Computational Linguistics |
Publication date | 2022 |
Pages | 1555-1568 |
Publication status | Published - 2022 |
Event | 2022 Findings of the Association for Computational Linguistics: EMNLP 2022 - Abu Dhabi, United Arab Emirates Duration: 7 Dec 2022 → 11 Dec 2022 |
Conference
Conference | 2022 Findings of the Association for Computational Linguistics: EMNLP 2022 |
---|---|
Country/Territory | United Arab Emirates |
City | Abu Dhabi |
Period | 07/12/2022 → 11/12/2022 |
Bibliographical note
Publisher Copyright:© 2022 Association for Computational Linguistics.