TY - JOUR
T1 - Classification of bloodstains deposited at different times on floor tiles using hierarchical modelling and a handheld NIR spectrometer
AU - Fonseca, Aline C.S.
AU - Pereira, José F.Q.
AU - Honorato, Ricardo S.
AU - Bro, Rasmus
AU - Pimentel, Maria Fernanda
N1 - Publisher Copyright:
© 2023 The Royal Society of Chemistry
PY - 2023
Y1 - 2023
N2 - Bloodstains are commonly encountered at crime scenes, especially on floor tiles, and can be deposited over different periods and intervals. Therefore, it is crucial to develop techniques that can accurately identify bloodstains deposited at different times. This study builds upon a previous investigation and aims to enhance the performance of three distinct hierarchical models (HMs) designed to differentiate and identify stains of human blood (HB), animal blood (AB), and common false positives (CFPs) on nine different types of floor tiles. Soft Independent Modeling Class Analogies (SIMCA), and Partial Least Squares-Discriminant Analysis (PLS-DA) were employed as decision rules in this process. The originally published model was constructed using a training set that included samples with a known time of deposit of six days. This model was then tested to predict samples with various deposition times, including human blood samples aged for 0, 1, 9, 20, 30, and 162 days, as well as animal blood samples aged for 0, 1, 10, 13, 20, 29, 105, and 176 days. To improve the identification of human blood, the models were modified by adding zero-day and one-day-old bloodstains to the original training set. All models showed improvement when fresher samples were included in the training set. The best results were achieved with the hierarchical model that used partial least squares-discriminant analysis as the second decision rule and incorporated one-day-old samples in the training set. This model yielded sensitivity values above 0.92 and specificity values above 0.7 for samples aged between zero and 30 days.
AB - Bloodstains are commonly encountered at crime scenes, especially on floor tiles, and can be deposited over different periods and intervals. Therefore, it is crucial to develop techniques that can accurately identify bloodstains deposited at different times. This study builds upon a previous investigation and aims to enhance the performance of three distinct hierarchical models (HMs) designed to differentiate and identify stains of human blood (HB), animal blood (AB), and common false positives (CFPs) on nine different types of floor tiles. Soft Independent Modeling Class Analogies (SIMCA), and Partial Least Squares-Discriminant Analysis (PLS-DA) were employed as decision rules in this process. The originally published model was constructed using a training set that included samples with a known time of deposit of six days. This model was then tested to predict samples with various deposition times, including human blood samples aged for 0, 1, 9, 20, 30, and 162 days, as well as animal blood samples aged for 0, 1, 10, 13, 20, 29, 105, and 176 days. To improve the identification of human blood, the models were modified by adding zero-day and one-day-old bloodstains to the original training set. All models showed improvement when fresher samples were included in the training set. The best results were achieved with the hierarchical model that used partial least squares-discriminant analysis as the second decision rule and incorporated one-day-old samples in the training set. This model yielded sensitivity values above 0.92 and specificity values above 0.7 for samples aged between zero and 30 days.
U2 - 10.1039/d3ay01204b
DO - 10.1039/d3ay01204b
M3 - Journal article
C2 - 37728415
AN - SCOPUS:85173049241
VL - 15
SP - 5403
EP - 5556
JO - Analytical Methods
JF - Analytical Methods
SN - 1759-9660
IS - 41
ER -