Comparing effects of terpene-based deep eutectic solvent and solid microneedles on skin permeation of drugs with varying lipophilicity

Grzegorz S. Czyrski, Mikkel K. Frese Hjort, Thomas Rades*, Andrea Heinz*

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

Transdermal delivery of therapeutic molecules is often hindered by the properties of the skin, with the stratum corneum serving as the primary permeation barrier. To overcome this barrier, the integrity of the stratum corneum can be modified by chemical permeation enhancers, such as deep eutectic solvents (DESs), or by mechanically impairing the skin with microneedles (MNs). However, a systematic comparison between these strategies is currently lacking. Hence, this study examined the potential of DESs and MNs to promote the permeation and retention of drugs with varying lipophilicities – specifically, the hydrophilic drug metronidazole (logP ∼ 0), the moderately lipophilic drug lidocaine (logP ∼ 2.3), and the highly lipophilic drug clotrimazole (logP ∼ 5). A mixture of menthol and thymol was selected as a model terpene-based DES and delivery vehicle, while a DermaPen equipped with solid MNs was used to mechanically impair the skin. Permeation rates of model drugs applied to the skin with either DES, MNs, or both were compared to the rates determined for the drugs applied in control vehicles. Both strategies were found to compromise the skin barrier function, but their permeation-enhancing effect was dependent on the lipophilicity of tested model drug. The DES was most effective for the hydrophilic drug metronidazole, while the MNs were more effective in increasing the permeation of the highly lipophilic drug clotrimazole. For the moderately lipophilic drug lidocaine, neither the DES nor microneedles increased its permeation rate, as the drug permeated through the skin well on its own. Notably, the combination of both enhancement strategies did not result in significantly better permeation rates of the drugs compared to the individual approaches. In conclusion, both the terpene-based DES and solid MNs are effective strategies to enhance drug permeation through the skin, but our results suggest that the choice of strategy should be dictated by the drug’s lipophilicity. Moreover, from a permeation-enhancing perspective, there is no benefit in combining these two strategies.
Original languageEnglish
Article number114576
JournalEuropean Journal of Pharmaceutics and Biopharmaceutics
ISSN0939-6411
DOIs
Publication statusAccepted/In press - 2024

Cite this