Complete mitochondrial genome phylogeographic analysis of killer whales (Orcinus orca) indicates multiple species

Phillip A Morin, Frederick I. Archer, Andrew David Foote, Julia Thidamarth Vilstrup Mouatt, Eric E. Allen, Paul Wade, John Durban, Kim Parsons, Robert Pitman, Lewyn Li, Pascal Bouffard, Sandra Cathrine Abel Nielsen, Morten Rasmussen, Eske Willerslev, Tom Gilbert, Timothy Harkins

    Research output: Contribution to journalJournal articleResearchpeer-review

    338 Citations (Scopus)

    Abstract

    Killer whales (Orcinus orca) currently comprise a single, cosmopolitan species with a diverse diet. However, studies over the last 30 yr have revealed populations of sympatric "ecotypes" with discrete prey preferences, morphology, and behaviors. Although these ecotypes avoid social interactions and are not known to interbreed, genetic studies to date have found extremely low levels of diversity in the mitochondrial control region, and few clear phylogeographic patterns worldwide. This low level of diversity is likely due to low mitochondrial mutation rates that are common to cetaceans. Using killer whales as a case study, we have developed a method to readily sequence, assemble, and analyze complete mitochondrial genomes from large numbers of samples to more accurately assess phylogeography and estimate divergence times. This represents an important tool for wildlife management, not only for killer whales but for many marine taxa. We used high-throughput sequencing to survey whole mitochondrial genome variation of 139 samples from the North Pacific, North Atlantic, and southern oceans. Phylogenetic analysis indicated that each of the known ecotypes represents a strongly supported clade with divergence times ranging from approximately 150,000 to 700,000 yr ago. We recommend that three named ecotypes be elevated to full species, and that the remaining types be recognized as subspecies pending additional data. Establishing appropriate taxonomic designations will greatly aid in understanding the ecological impacts and conservation needs of these important marine predators. We predict that phylogeographic mitogenomics will become an important tool for improved statistical phylogeography and more precise estimates of divergence times.
    Original languageEnglish
    JournalGenome Research
    Volume20
    Issue number7
    Pages (from-to)908-916
    Number of pages9
    ISSN1088-9051
    DOIs
    Publication statusPublished - 1 Jul 2010

    Keywords

    • Animals
    • Base Sequence
    • Genetic Speciation
    • Genetic Variation
    • Genome, Mitochondrial
    • Geography
    • Molecular Sequence Data
    • Oceans and Seas
    • Phylogeny
    • Sequence Analysis, DNA
    • Sequence Homology, Nucleic Acid
    • Species Specificity
    • Whale, Killer

    Cite this