Abstract
The autoinhibited plasma membrane calcium ATPase ACA8 from A. thaliana has an N-terminal autoinhibitory domain. Binding of calcium-loaded calmodulin at two sites located at residues 42–62 and 74–96 relieves autoinhibition of ACA8 activity. Through activity studies and a yeast complementation assay we investigated wild-type (WT) and N-terminally truncated ACA8 constructs (Δ20, Δ30, Δ35, Δ37, Δ40, Δ74 and Δ100) to explore the role of conserved motifs in the N-terminal segment preceding the calmodulin binding sites. Furthermore, we purified WT, Δ20- and Δ100-ACA8, tested activity in vitro and performed structural studies of purified Δ20-ACA8 stabilized in a lipid nanodisc to explore the mechanism of autoinhibition. We show that an N-terminal segment between residues 20 and 35 including conserved Phe32, upstream of the calmodulin binding sites, is important for autoinhibition and the activation by calmodulin. Cryo-EM structure determination at 3.3 Å resolution of a beryllium fluoride inhibited E2 form, and at low resolution for an E1 state combined with AlphaFold prediction provide a model for autoinhibition, consistent with the mutational studies.
Original language | English |
---|---|
Article number | 168747 |
Journal | Journal of Molecular Biology |
Volume | 436 |
Issue number | 20 |
Number of pages | 18 |
ISSN | 0022-2836 |
DOIs | |
Publication status | Published - 2024 |
Bibliographical note
Publisher Copyright:© 2024 The Author(s)
Keywords
- autoinhibition
- calcium ATPase
- calmodulin
- cryo-EM
- N-terminal truncations