TY - JOUR
T1 - Deep learning based low-activity PET reconstruction of [11C]PiB and [18F]FE-PE2I in neurodegenerative disorders
AU - Daveau, Raphaël Sura
AU - Law, Ian
AU - Henriksen, Otto Mølby
AU - Hasselbalch, Steen Gregers
AU - Andersen, Ulrik Bjørn
AU - Anderberg, Lasse
AU - Højgaard, Liselotte
AU - Andersen, Flemming Littrup
AU - Ladefoged, Claes Nøhr
N1 - Publisher Copyright:
© 2022 The Authors
PY - 2022
Y1 - 2022
N2 - Purpose: Positron Emission Tomography (PET) can support a diagnosis of neurodegenerative disorder by identifying disease-specific pathologies. Our aim was to investigate the feasibility of using activity reduction in clinical [18F]FE-PE2I and [11C]PiB PET/CT scans, simulating low injected activity or scanning time reduction, in combination with AI-assisted denoising. Methods: A total of 162 patients with clinically uncertain Alzheimer's disease underwent amyloid [11C]PiB PET/CT and 509 patients referred for clinically uncertain Parkinson's disease underwent dopamine transporter (DAT) [18F]FE-PE2I PET/CT. Simulated low-activity data were obtained by random sampling of 5% of the events from the list-mode file and a 5% time window extraction in the middle of the scan. A three-dimensional convolutional neural network (CNN) was trained to denoise the resulting PET images for each disease cohort. Results: Noise reduction of low-activity PET images was successful for both cohorts using 5% of the original activity with improvement in visual quality and all similarity metrics with respect to the ground-truth images. Clinically relevant metrics extracted from the low-activity images deviated < 2% compared to ground-truth values, which were not significantly changed when extracting the metrics from the denoised images. Conclusion: The presented models were based on the same network architecture and proved to be a robust tool for denoising brain PET images with two widely different tracer distributions (delocalized, ([11C]PiB, and highly localized, [18F]FE-PE2I). This broad and robust application makes the presented network a good choice for improving the quality of brain images to the level of the standard-activity images without degrading clinical metric extraction. This will allow for reduced dose or scan time in PET/CT to be implemented clinically.
AB - Purpose: Positron Emission Tomography (PET) can support a diagnosis of neurodegenerative disorder by identifying disease-specific pathologies. Our aim was to investigate the feasibility of using activity reduction in clinical [18F]FE-PE2I and [11C]PiB PET/CT scans, simulating low injected activity or scanning time reduction, in combination with AI-assisted denoising. Methods: A total of 162 patients with clinically uncertain Alzheimer's disease underwent amyloid [11C]PiB PET/CT and 509 patients referred for clinically uncertain Parkinson's disease underwent dopamine transporter (DAT) [18F]FE-PE2I PET/CT. Simulated low-activity data were obtained by random sampling of 5% of the events from the list-mode file and a 5% time window extraction in the middle of the scan. A three-dimensional convolutional neural network (CNN) was trained to denoise the resulting PET images for each disease cohort. Results: Noise reduction of low-activity PET images was successful for both cohorts using 5% of the original activity with improvement in visual quality and all similarity metrics with respect to the ground-truth images. Clinically relevant metrics extracted from the low-activity images deviated < 2% compared to ground-truth values, which were not significantly changed when extracting the metrics from the denoised images. Conclusion: The presented models were based on the same network architecture and proved to be a robust tool for denoising brain PET images with two widely different tracer distributions (delocalized, ([11C]PiB, and highly localized, [18F]FE-PE2I). This broad and robust application makes the presented network a good choice for improving the quality of brain images to the level of the standard-activity images without degrading clinical metric extraction. This will allow for reduced dose or scan time in PET/CT to be implemented clinically.
KW - Alzheimer's disease
KW - Deep learning
KW - Parkinson's disease
KW - PET denoising
KW - [C]PiB
KW - [F]FE-PE2I
U2 - 10.1016/j.neuroimage.2022.119412
DO - 10.1016/j.neuroimage.2022.119412
M3 - Journal article
C2 - 35753592
AN - SCOPUS:85133215660
VL - 259
JO - NeuroImage
JF - NeuroImage
SN - 1053-8119
M1 - 119412
ER -