Abstract
Recent global developments underscore the prominent role big data have in modern medical science. Privacy issues are a prevalent problem for collecting and sharing data between researchers. Synthetic data generated to represent real data carrying similar information and distribution may alleviate the privacy issue.
In this study, we present generative adversarial networks (GANs) capable of generating realistic synthetic DeepFake 12-lead 10-sec electrocardiograms (ECGs). We have developed and compare two methods, WaveGAN* and Pulse2Pulse GAN. We trained the GANs with 7,233 real normal ECG to produce 121,977 DeepFake normal ECGs. By verifying the ECGs using a commercial ECG interpretation program (MUSE 12SL, GE Healthcare), we demonstrate that the Pulse2Pulse GAN was superior to the WaveGAN to produce realistic ECGs. ECG intervals and amplitudes were similar between the DeepFake and real ECGs. These synthetic ECGs are fully anonymous and cannot be referred to any individual, hence they may be used freely. The synthetic dataset will be available as open access for researchers at OSF.io and the DeepFake generator available at the Python Package Index (PyPI) for generating synthetic ECGs.
In conclusion, we were able to generate realistic synthetic ECGs using adversarial neural networks on normal ECGs from two population studies, i.e., there by addressing the relevant privacy issues in medical datasets.
In this study, we present generative adversarial networks (GANs) capable of generating realistic synthetic DeepFake 12-lead 10-sec electrocardiograms (ECGs). We have developed and compare two methods, WaveGAN* and Pulse2Pulse GAN. We trained the GANs with 7,233 real normal ECG to produce 121,977 DeepFake normal ECGs. By verifying the ECGs using a commercial ECG interpretation program (MUSE 12SL, GE Healthcare), we demonstrate that the Pulse2Pulse GAN was superior to the WaveGAN to produce realistic ECGs. ECG intervals and amplitudes were similar between the DeepFake and real ECGs. These synthetic ECGs are fully anonymous and cannot be referred to any individual, hence they may be used freely. The synthetic dataset will be available as open access for researchers at OSF.io and the DeepFake generator available at the Python Package Index (PyPI) for generating synthetic ECGs.
In conclusion, we were able to generate realistic synthetic ECGs using adversarial neural networks on normal ECGs from two population studies, i.e., there by addressing the relevant privacy issues in medical datasets.
Original language | English |
---|---|
Number of pages | 17 |
DOIs | |
Publication status | Published - 2022 |
Series | medRxiv |
---|