Abstract
Until relatively recently, the pediatric population has largely been ignored during the development of new drug products, which has led to a high level of “off-label” use of drugs in this particular population. In this study, an infant friendly self-nanoemulsifying drug delivery system (SNEDDS) was developed for oral delivery of a commonly used “off-label” drug – amphotericin B (AmB). AmB was complexed with monoacyl-phosphatidylcholine (MAPC) by lyophilization, transforming crystalline AmB into its amorphous state in the AmB-MAPC complex (APC). The APC-loaded SNEDDS (APC-SNEDDS) showed excellent self-emulsifying properties; after dispersion of the APC-SNEDDS in purified water, nanoscale emulsion droplets were formed within 1 min with a z-average size of 179 ± 1 nm. In vitro pediatric gastrointestinal (GI) digestion and dissolution results showed that the APC-SNEDDS significantly increased the amount of AmB solubilized in aqueous phase and that the precipitated AmB from the APC-SNEDDS re-dissolved faster, compared with crystalline AmB in SNEDDS (AmB-SNEDDS), the complex without the SNEDDS (APC), the physical mixture of AmB and MAPC (AmB/MAPC PM), and crystalline AmB alone (AmB). Overall, the present in vitro results suggest that integrating the APC into an infant friendly SNEDDS is a promising approach for oral delivery of AmB to young pediatric patients.
Original language | English |
---|---|
Article number | 124286 |
Journal | International Journal of Pharmaceutics |
Volume | 660 |
Number of pages | 8 |
ISSN | 0378-5173 |
DOIs | |
Publication status | Published - 2024 |
Bibliographical note
Publisher Copyright:© 2024 The Authors
Keywords
- Amphotericin B
- Monoacyl-phosphatidylcholine
- Neonates and young infants
- Oral delivery
- Phospholipid-drug complex
- Self-nanoemulsifying drug delivery system