TY - JOUR
T1 - Different or the same?
T2 - exploring the physicochemical properties and molecular mobility of celecoxib amorphous forms
AU - Wang, Mengwei
AU - Aalling-Frederiksen, Olivia
AU - Madsen, Anders
AU - Jensen, Kirsten M.Ø.
AU - Jørgensen, Mads R.V.
AU - Gong, Junbo
AU - Rades, Thomas
AU - Martins, Inês C.B.
N1 - Publisher Copyright:
© 2024 The Authors
PY - 2024
Y1 - 2024
N2 - The influence of different preparation methods on the physicochemical properties of amorphous solid forms have gained considerable attention, especially with recent publications on pharmaceutical polyamorphism. In the present study, we have investigated the possible occurrence of polyamorphism in the drug celecoxib (CEL) by investigating the thermal behavior, morphology, structure, molecular mobility and physical stability of amorphous CEL obtained by quench-cooling (QC), ball milling (BM) and spray drying (SD). Similar glass transition temperatures but different recrystallization behaviors were observed for CEL-QC, CEL-BM and CEL-SD using modulated differential scanning calorimetry analysis. A correlation between the different recrystallization behaviors of the three CEL amorphous forms and the respective distinct powder morphologies, was also found. Molecular dynamics simulations however, reveal that CEL presents similar molecular conformational distributions when subjected to QC and SD. Moreover, the obtained molecular conformational distributions of CEL are different from the ones found in its crystal structure and also from the ones found in the lowest-energy structure obtained by quantum mechanical calculations. The type and strength of CEL hydrogen bond interactions found in CEL-QC and CEL-SD systems are almost identical, though different from the ones presented in the crystal structure. Pair distribution function analyses and isothermal microcalorimetry show similar local structures and structural relaxation times, respectively, for CEL-QC, CEL-BM and CEL-SD. The present work shows that not only similar physicochemical properties (glass transition temperature, and structural relaxation time), but also similar molecular conformational distributions were observed for all prepared CEL amorphous systems. Hence, despite their different recrystallization behaviors, the three amorphous forms of CEL did not show any signs of polyamorphism.
AB - The influence of different preparation methods on the physicochemical properties of amorphous solid forms have gained considerable attention, especially with recent publications on pharmaceutical polyamorphism. In the present study, we have investigated the possible occurrence of polyamorphism in the drug celecoxib (CEL) by investigating the thermal behavior, morphology, structure, molecular mobility and physical stability of amorphous CEL obtained by quench-cooling (QC), ball milling (BM) and spray drying (SD). Similar glass transition temperatures but different recrystallization behaviors were observed for CEL-QC, CEL-BM and CEL-SD using modulated differential scanning calorimetry analysis. A correlation between the different recrystallization behaviors of the three CEL amorphous forms and the respective distinct powder morphologies, was also found. Molecular dynamics simulations however, reveal that CEL presents similar molecular conformational distributions when subjected to QC and SD. Moreover, the obtained molecular conformational distributions of CEL are different from the ones found in its crystal structure and also from the ones found in the lowest-energy structure obtained by quantum mechanical calculations. The type and strength of CEL hydrogen bond interactions found in CEL-QC and CEL-SD systems are almost identical, though different from the ones presented in the crystal structure. Pair distribution function analyses and isothermal microcalorimetry show similar local structures and structural relaxation times, respectively, for CEL-QC, CEL-BM and CEL-SD. The present work shows that not only similar physicochemical properties (glass transition temperature, and structural relaxation time), but also similar molecular conformational distributions were observed for all prepared CEL amorphous systems. Hence, despite their different recrystallization behaviors, the three amorphous forms of CEL did not show any signs of polyamorphism.
KW - Celecoxib
KW - Glass transition temperature
KW - Molecular dynamics simulations
KW - Pair distribution function
KW - Structural relaxation time
U2 - 10.1016/j.ijpharm.2024.124470
DO - 10.1016/j.ijpharm.2024.124470
M3 - Journal article
C2 - 39004294
AN - SCOPUS:85198551987
VL - 661
JO - International Journal of Pharmaceutics
JF - International Journal of Pharmaceutics
SN - 0378-5173
M1 - 124470
ER -