TY - JOUR
T1 - Does selection against transcriptional interference shape retroelement-free regions in mammalian genomes?
AU - Mourier, Tobias
AU - Willerslev, Eske
PY - 2008
Y1 - 2008
N2 - BACKGROUND: Eukaryotic genomes are scattered with retroelements that proliferate through retrotransposition. Although retroelements make up around 40 percent of the human genome, large regions are found to be completely devoid of retroelements. This has been hypothesised to be a result of genomic regions being intolerant to insertions of retroelements. The inadvertent transcriptional activity of retroelements may affect neighbouring genes, which in turn could be detrimental to an organism. We speculate that such retroelement transcription, or transcriptional interference, is a contributing factor in generating and maintaining retroelement-free regions in the human genome. METHODOLOGY/PRINCIPAL FINDINGS: Based on the known transcriptional properties of retroelements, we expect long interspersed elements (LINEs) to be able to display a high degree of transcriptional interference. In contrast, we expect short interspersed elements (SINEs) to display very low levels of transcriptional interference. We find that genomic regions devoid of long interspersed elements (LINEs) are enriched for protein-coding genes, but that this is not the case for regions devoid of short interspersed elements (SINEs). This is expected if genes are subject to selection against transcriptional interference. We do not find microRNAs to be associated with genomic regions devoid of either SINEs or LINEs. We further observe an increased relative activity of genes overlapping LINE-free regions during early embryogenesis, where activity of LINEs has been identified previously. CONCLUSIONS/SIGNIFICANCE: Our observations are consistent with the notion that selection against transcriptional interference has contributed to the maintenance and/or generation of retroelement-free regions in the human genome.
AB - BACKGROUND: Eukaryotic genomes are scattered with retroelements that proliferate through retrotransposition. Although retroelements make up around 40 percent of the human genome, large regions are found to be completely devoid of retroelements. This has been hypothesised to be a result of genomic regions being intolerant to insertions of retroelements. The inadvertent transcriptional activity of retroelements may affect neighbouring genes, which in turn could be detrimental to an organism. We speculate that such retroelement transcription, or transcriptional interference, is a contributing factor in generating and maintaining retroelement-free regions in the human genome. METHODOLOGY/PRINCIPAL FINDINGS: Based on the known transcriptional properties of retroelements, we expect long interspersed elements (LINEs) to be able to display a high degree of transcriptional interference. In contrast, we expect short interspersed elements (SINEs) to display very low levels of transcriptional interference. We find that genomic regions devoid of long interspersed elements (LINEs) are enriched for protein-coding genes, but that this is not the case for regions devoid of short interspersed elements (SINEs). This is expected if genes are subject to selection against transcriptional interference. We do not find microRNAs to be associated with genomic regions devoid of either SINEs or LINEs. We further observe an increased relative activity of genes overlapping LINE-free regions during early embryogenesis, where activity of LINEs has been identified previously. CONCLUSIONS/SIGNIFICANCE: Our observations are consistent with the notion that selection against transcriptional interference has contributed to the maintenance and/or generation of retroelement-free regions in the human genome.
U2 - 10.1371/journal.pone.0003760
DO - 10.1371/journal.pone.0003760
M3 - Journal article
C2 - 19018283
SP - e3760
JO - PLoS ONE
JF - PLoS ONE
SN - 1932-6203
ER -