TY - JOUR
T1 - Dynamics in carbon exchange fluxes for a grazed semi-arid savanna ecosystem in West Africa
AU - Tagesson, Torbern
AU - Fensholt, Rasmus
AU - Cropley, Ford
AU - Guiro, Idrissa
AU - Horion, Stéphanie
AU - Ehammer, Andrea
AU - Ardö, Jonas
PY - 2015/7/1
Y1 - 2015/7/1
N2 - The main aim of this paper is to study land-atmosphere exchange of carbon dioxide (CO2) for semi-arid savanna ecosystems of the Sahel region and its response to climatic and environmental change. A subsidiary aim is to study and quantify the seasonal dynamics in light use efficiency (ε) being a key variable in scaling carbon fluxes from ground observations using earth observation data. The net ecosystem exchange of carbon dioxide (NEE) 2010-2013 was measured using the eddy covariance technique at a grazed semi-arid savanna site in Senegal, West Africa. Night-time NEE was not related to temperature, confirming that care should be taken before applying temperature response curves for hot dry semi-arid regions when partitioning NEE into gross primary productivity (GPP) and ecosystem respiration (Reco). Partitioning was instead done using light response curves. The values of ε ranged between 0.02g carbon (C) MJ-1 for the dry season and 2.27gCMJ-1 for the peak of the rainy season, and its seasonal dynamics was governed by vegetation phenology, photosynthetically active radiation, soil moisture and vapor pressure deficit (VPD). The CO2 exchange fluxes were very high in comparison to other semi-arid savanna sites; half-hourly GPP and Reco peaked at -43μmol CO2m-2s-1 and 20μmol CO2m-2s-1, and daily GPP and Reco peaked at -15gCm-2 and 12gCm-2, respectively. Possible explanations for the high CO2 fluxes are a high fraction of C4 species, alleviated water stress conditions, and a strong grazing pressure that results in compensatory growth and fertilization effects. We also conclude that vegetation phenology, soil moisture, radiation, VPD and temperature were major components in determining the seasonal dynamics of CO2 fluxes. Despite the height of the peak of the growing season CO2 fluxes, the annual C budget (average NEE: -271gCm-2) were similar to that in other semi-arid ecosystems because the short rainy season resulted in a short growing season. Global circulation models project a decrease in rainfall, an increase in temperature and a shorter growing season for the western Sahel region, and the productivity and the sink function of this semi-arid ecosystem may thus be lower in the future.
AB - The main aim of this paper is to study land-atmosphere exchange of carbon dioxide (CO2) for semi-arid savanna ecosystems of the Sahel region and its response to climatic and environmental change. A subsidiary aim is to study and quantify the seasonal dynamics in light use efficiency (ε) being a key variable in scaling carbon fluxes from ground observations using earth observation data. The net ecosystem exchange of carbon dioxide (NEE) 2010-2013 was measured using the eddy covariance technique at a grazed semi-arid savanna site in Senegal, West Africa. Night-time NEE was not related to temperature, confirming that care should be taken before applying temperature response curves for hot dry semi-arid regions when partitioning NEE into gross primary productivity (GPP) and ecosystem respiration (Reco). Partitioning was instead done using light response curves. The values of ε ranged between 0.02g carbon (C) MJ-1 for the dry season and 2.27gCMJ-1 for the peak of the rainy season, and its seasonal dynamics was governed by vegetation phenology, photosynthetically active radiation, soil moisture and vapor pressure deficit (VPD). The CO2 exchange fluxes were very high in comparison to other semi-arid savanna sites; half-hourly GPP and Reco peaked at -43μmol CO2m-2s-1 and 20μmol CO2m-2s-1, and daily GPP and Reco peaked at -15gCm-2 and 12gCm-2, respectively. Possible explanations for the high CO2 fluxes are a high fraction of C4 species, alleviated water stress conditions, and a strong grazing pressure that results in compensatory growth and fertilization effects. We also conclude that vegetation phenology, soil moisture, radiation, VPD and temperature were major components in determining the seasonal dynamics of CO2 fluxes. Despite the height of the peak of the growing season CO2 fluxes, the annual C budget (average NEE: -271gCm-2) were similar to that in other semi-arid ecosystems because the short rainy season resulted in a short growing season. Global circulation models project a decrease in rainfall, an increase in temperature and a shorter growing season for the western Sahel region, and the productivity and the sink function of this semi-arid ecosystem may thus be lower in the future.
KW - Gross primary productivity
KW - Light use efficiency
KW - Net ecosystem exchange
KW - Regression tree
KW - Sahel
UR - http://www.scopus.com/inward/record.url?scp=84924607189&partnerID=8YFLogxK
U2 - 10.1016/j.agee.2015.02.017
DO - 10.1016/j.agee.2015.02.017
M3 - Journal article
AN - SCOPUS:84924607189
VL - 205
SP - 15
EP - 24
JO - Agro-Ecosystems
JF - Agro-Ecosystems
SN - 0167-8809
ER -