Effects of training status on PDH regulation in human skeletal muscle during exercise

Anders Gudiksen, Lærke Bertholdt, Tomasz Stankiewicz, Jonas Tybirk, Peter Stendahl Plomgaard, Jens Bangsbo, Henriette Pilegaard

Research output: Contribution to journalJournal articleResearchpeer-review

13 Citations (Scopus)

Abstract

Pyruvate dehydrogenase (PDH) is the gateway enzyme for carbohydrate-derived pyruvate feeding into the TCA cycle. PDH may play a central role in regulating substrate shifts during exercise, but the influence of training state on PDH regulation during exercise is not fully elucidated. The purpose of this study was to investigate the impact of training state on post-translational regulation of PDHa activity during submaximal and exhaustive exercise. Eight untrained and nine endurance exercise-trained healthy male subjects performed incremental exercise on a cycle ergometer: 40 min at 50% incremental peak power output (IPPO), 10 min at 65% (IPPO), followed by 80% (IPPO) until exhaustion. Trained subjects had higher (P < 0.05) PDH-E1α, PDK1, PDK2, PDK4, and PDP1 protein content as well as PDH phosphorylation and PDH acetylation. Exercising at the same relative intensity led to similar muscle PDH activation in untrained and trained subjects, whereas PDHa activity at exhaustion was higher (P < 0.05) in trained than untrained. Furthermore, exercise induced similar PDH dephosphorylation in untrained and trained subjects, while PDH acetylation was increased (P < 0.05) only in trained subjects. In conclusion, PDHa activity and PDH dephosphorylation were well adjusted to the relative exercise intensity during submaximal exercise. In addition, higher PDHa activity in trained than untrained at exhaustion seemed related to differences in glycogen utilization rather than differences in PDH phosphorylation and acetylation state, although site-specific contributions cannot be ruled out.

Original languageEnglish
JournalPflügers Archiv - European Journal of Physiology
Volume469
Issue number12
Pages (from-to)1615-1630
Number of pages16
ISSN0031-6768
DOIs
Publication statusPublished - 2017

Keywords

  • Pyruvate dehydrogenase
  • Skeletal muscle
  • Acetylation
  • Phosphorylation
  • Exercise training
  • Exercise

Cite this