Abstract
Sodium-coupled neurotransmitter transporters play a fundamental role in the termination of synaptic neurotransmission, which makes them a major drug target. The reconstitution of these secondary active transporters into liposomes has shed light on their molecular transport mechanisms. From the earliest days of the reconstitution technique up to today's single-molecule studies, insights from live functioning transporters have been indispensable for our understanding of their physiological impact. The two classes of sodium-coupled neurotransmitter transporters, the neurotransmitter: sodium symporters and the excitatory amino acid transporters, have vastly different molecular structures, but complementary proteoliposome studies have sought to unravel their ion-dependence and transport kinetics. Furthermore, reconstitution experiments have been used on both protein classes to investigate the role of e.g. the lipid environment, of posttranslational modifications, and of specific amino acid residues in transport. Techniques that allow the detection of transport at a single-vesicle resolution have been developed, and single-molecule studies have started to reveal single transporter kinetics, which will expand our understanding of how transport across the membrane is facilitated at protein level. Here, we review a selection of the results and applications where the reconstitution of the two classes of neurotransmitter transporters has been instrumental.
Original language | English |
---|---|
Journal | Neurochemical Research |
Volume | 47 |
Pages (from-to) | 127–137 |
Number of pages | 11 |
ISSN | 0364-3190 |
DOIs | |
Publication status | Published - 2022 |
Keywords
- Neurotransmitter transporters
- Proteoliposomes
- Reconstitution
- Membrane transport
- Secondary active transporters
- AMINOBUTYRIC-ACID TRANSPORTER
- GLUTAMATE TRANSPORTER
- DOPAMINE TRANSPORTER
- PARTIAL-PURIFICATION
- GLYCINE TRANSPORTER
- RAT-BRAIN
- MEMBRANE
- HOMOLOG
- NA+
- BINDING