Abstract
The demand for large-scale computational resources for Neural Architecture Search (NAS) has been lessened by tabular benchmarks for NAS. Evaluating NAS strategies is now possible on extensive search spaces and at a moderate computational cost. But so far, NAS has mainly focused on maximising performance on some hold-out validation/test set. However, energy consumption is a partially conflicting objective that should not be neglected. We hypothesise that constraining NAS to include the energy consumption of training the models could reveal a sub-space of undiscovered architectures that are more computationally efficient with a smaller carbon footprint. To support the hypothesis, an existing tabular benchmark for NAS is augmented with the energy consumption of each architecture. We then perform multi-objective optimisation that includes energy consumption as an additional objective. We demonstrate the usefulness of multi-objective NAS for uncovering the trade-off between performance and energy consumption as well as for finding more energy-efficient architectures. The updated tabular benchmark, EC-NAS-Bench, is open-sourced to encourage the further exploration of energy consumption-aware NAS.
Original language | English |
---|---|
Publisher | arxiv.org |
Number of pages | 13 |
Publication status | Published - 12 Oct 2022 |
Bibliographical note
Source code at https://github.com/PedramBakh/EC-NAS-BenchKeywords
- cs.LG
- stat.ML