Abstract
Polyethylenoxide (PEG) covered liposomes are used as lipid-based drug-delivery systems. In comparison to conventional liposomes the polymer-covered liposomes display a long circulation half-life in the blood stream. We investigate the influence of polyethyleneoxide-distearoylphosphatidylethanolamine (DSPE-PEG750) lipopolymer concentration on phospholipase A2 (PLA2) catalyzed hydrolysis of liposomes composed of stearoyloleoylphosphatidylcholine (SOPC). The characteristic PLA2 lag-time was determined by fluorescence and the degree of lipid hydrolysis was followed by HPLC analysis. Particle size and zeta-potential were measured as a function of DSPE-PEG750 lipopolymer concentration. A significant decrease in the lag-time, and hence an increase in enzyme activity, was observed with increasing concentrations of the anionic DSPE-PEG750 lipopolymer lipids. The observed decrease in lag-time might be related to changes in the surface potential and the PLA2 lipid membrane affinity.
Original language | English |
---|---|
Journal | Advances in Colloid and Interface Science |
Volume | 89-90 |
Pages (from-to) | 303-311 |
Number of pages | 9 |
ISSN | 0001-8686 |
DOIs | |
Publication status | Published - 29 Jan 2001 |