TY - JOUR
T1 - Excitation–Emission Matrix Fluorescence Spectroscopy Coupled with PARAFAC Modeling for Viability Prediction of Cells
AU - Głowacz, Klaudia
AU - Skorupska, Sandra
AU - Grabowska-Jadach, Ilona
AU - Bro, Rasmus
AU - Ciosek-Skibińska, Patrycja
N1 - doi: 10.1021/acsomega.2c05383
PY - 2023
Y1 - 2023
N2 - Cell-based sensors and assays have great potential in bioanalysis, drug discovery screening, and biochemical mechanisms research. The cell viability tests should be fast, safe, reliable, and time- and cost-effective. Although methods stated as “gold standards”, such as MTT, XTT, and LDH assays, usually fulfill these assumptions, they also show some limitations. They can be time-consuming, labor-intensive, and prone to errors and interference. Moreover, they do not enable the observation of the cell viability changes in real-time, continuously, and nondestructively. Therefore, we propose an alternative method of viability testing: native excitation–emission matrix fluorescence spectroscopy coupled with parallel factor analysis (PARAFAC), which is especially advantageous for cell monitoring due to its noninvasiveness and nondestructiveness and because there is no need for labeling and sample preparation. We demonstrate that our approach provides accurate results with even better sensitivity than the standard MTT test. With PARAFAC, it is possible to study the mechanism of the observed cell viability changes, which can be directly linked to increasing/decreasing fluorophores in the cell culture medium. The resulting parameters of the PARAFAC model are also helpful in establishing a reliable regression model for accurate and precise determination of the viability in A375 and HaCaT-adherent cell cultures treated with oxaliplatin.
AB - Cell-based sensors and assays have great potential in bioanalysis, drug discovery screening, and biochemical mechanisms research. The cell viability tests should be fast, safe, reliable, and time- and cost-effective. Although methods stated as “gold standards”, such as MTT, XTT, and LDH assays, usually fulfill these assumptions, they also show some limitations. They can be time-consuming, labor-intensive, and prone to errors and interference. Moreover, they do not enable the observation of the cell viability changes in real-time, continuously, and nondestructively. Therefore, we propose an alternative method of viability testing: native excitation–emission matrix fluorescence spectroscopy coupled with parallel factor analysis (PARAFAC), which is especially advantageous for cell monitoring due to its noninvasiveness and nondestructiveness and because there is no need for labeling and sample preparation. We demonstrate that our approach provides accurate results with even better sensitivity than the standard MTT test. With PARAFAC, it is possible to study the mechanism of the observed cell viability changes, which can be directly linked to increasing/decreasing fluorophores in the cell culture medium. The resulting parameters of the PARAFAC model are also helpful in establishing a reliable regression model for accurate and precise determination of the viability in A375 and HaCaT-adherent cell cultures treated with oxaliplatin.
U2 - 10.1021/acsomega.2c05383
DO - 10.1021/acsomega.2c05383
M3 - Journal article
C2 - 37179610
VL - 8
SP - 15968
EP - 15978
JO - ACS Omega
JF - ACS Omega
SN - 2470-1343
IS - 18
ER -