TY - JOUR
T1 - Fecal virome transfer improves proliferation of commensal gut Akkermansia muciniphila and unexpectedly enhances the fertility rate in laboratory mice
AU - Rasmussen, Torben Sølbeck
AU - Mentzel, Caroline M.Junker
AU - Danielsen, Malene Refslund
AU - Jakobsen, Rasmus Riemer
AU - Zachariassen, Line Sidsel Fisker
AU - Castro Mejia, Josue Leonardo
AU - Brunse, Anders
AU - Hansen, Lars Hestbjerg
AU - Hansen, Camilla Hartmann Friis
AU - Hansen, Axel Kornerup
AU - Nielsen, Dennis Sandris
N1 - Publisher Copyright:
© 2023 The Author(s). Published with license by Taylor & Francis Group, LLC.
PY - 2023
Y1 - 2023
N2 - Probiotics are intended to improve gastrointestinal health when consumed. However, the probiotics marketed today only colonize the densely populated gut to a limited extent. Bacteriophages comprise the majority of viruses in the human gut virome and there are strong indications that they play important roles in shaping the gut microbiome. Here, we investigate the use of fecal virome transplantation (FVT, sterile filtrated feces) as a mean to alter the gut microbiome composition to lead the way for persistent colonization of two types of probiotics: Lacticaseibacillus rhamnosus GG (LGG) representing a well-established probiotic and Akkermansia muciniphila (AKM) representing a putative next-generation probiotic. Male and female C57BL/6NTac mice were cohoused in pairs from 4 weeks of age and received the following treatment by oral gavage at week 5 and 6: AKM+FVT, LGG+FVT, probiotic sham (Pro-sham)+FVT, LGG+Saline, AKM+Saline, and control (Pro-sham+Saline). The FVT donor material originated from mice with high relative abundance of A. muciniphila. All animals were terminated at age 9 weeks. The FVT treatment did not increase the relative abundance of the administered LGG or AKM in the recipient mice. Instead FVT significantly (p < 0.05) increased the abundance of naturally occurring A.muciniphila compared to the control. This highlights the potential of propagating the existing commensal “probiotics” that have already permanently colonized the gut. Being co-housed male and female, a fraction of the female mice became pregnant. Unexpectedly, the FVT treated mice were found to have a significantly (p < 0.05) higher fertility rate independent of probiotic administration. These preliminary observations urge for follow-up studies investigating interactions between the gut microbiome and fertility.
AB - Probiotics are intended to improve gastrointestinal health when consumed. However, the probiotics marketed today only colonize the densely populated gut to a limited extent. Bacteriophages comprise the majority of viruses in the human gut virome and there are strong indications that they play important roles in shaping the gut microbiome. Here, we investigate the use of fecal virome transplantation (FVT, sterile filtrated feces) as a mean to alter the gut microbiome composition to lead the way for persistent colonization of two types of probiotics: Lacticaseibacillus rhamnosus GG (LGG) representing a well-established probiotic and Akkermansia muciniphila (AKM) representing a putative next-generation probiotic. Male and female C57BL/6NTac mice were cohoused in pairs from 4 weeks of age and received the following treatment by oral gavage at week 5 and 6: AKM+FVT, LGG+FVT, probiotic sham (Pro-sham)+FVT, LGG+Saline, AKM+Saline, and control (Pro-sham+Saline). The FVT donor material originated from mice with high relative abundance of A. muciniphila. All animals were terminated at age 9 weeks. The FVT treatment did not increase the relative abundance of the administered LGG or AKM in the recipient mice. Instead FVT significantly (p < 0.05) increased the abundance of naturally occurring A.muciniphila compared to the control. This highlights the potential of propagating the existing commensal “probiotics” that have already permanently colonized the gut. Being co-housed male and female, a fraction of the female mice became pregnant. Unexpectedly, the FVT treated mice were found to have a significantly (p < 0.05) higher fertility rate independent of probiotic administration. These preliminary observations urge for follow-up studies investigating interactions between the gut microbiome and fertility.
KW - Akkermansia muciniphila
KW - Fecal virome transplantation
KW - Fertility
KW - Gut microbiome
KW - Lacticaseibacillus rhamnosus
KW - Probiotic engraftment
U2 - 10.1080/19490976.2023.2208504
DO - 10.1080/19490976.2023.2208504
M3 - Journal article
C2 - 37150906
AN - SCOPUS:85157966363
VL - 15
JO - Gut Microbes
JF - Gut Microbes
SN - 1949-0976
IS - 1
M1 - 2208504
ER -