Foundations and practice of binary process discovery

Tijs Slaats*, Søren Debois, Christoffer Olling Back, Axel Kjeld Fjelrad Christfort

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

17 Downloads (Pure)

Abstract

Most contemporary process discovery methods take as inputs only positive examples of process executions, and so they are one-class classification algorithms. However, we have found negative examples to also be available in industry, hence we build on earlier work that treats process discovery as a binary classification problem. This approach opens the door to many well-established methods and metrics from machine learning, in particular to improve the distinction between what should and should not be allowed by the output model. Concretely, we (1) present a verified formalisation of process discovery as a binary classification problem; (2) provide cases with negative examples from industry, including real-life logs; (3) propose the Rejection Miner binary classification procedure, applicable to any process notation that has a suitable syntactic composition operator; (4) implement two concrete binary miners, one outputting Declare patterns, the other Dynamic Condition Response (DCR) graphs; and (5) apply these miners to real world and synthetic logs obtained from our industry partners and the process discovery contest, showing increased output model quality in terms of accuracy and model size.

Original languageEnglish
Article number102339
JournalInformation Systems
Volume121
Number of pages20
ISSN0306-4379
DOIs
Publication statusPublished - 2024

Bibliographical note

Publisher Copyright:
© 2023

Keywords

  • Binary classification
  • DisCoveR
  • Dynamic condition response graphs
  • Labelled event logs
  • Negative examples
  • Process mining

Cite this