TY - JOUR
T1 - GABA(A) receptor ligands and their therapeutic potentials.
AU - Frølund, Bente
AU - Ebert, Bjarke
AU - Kristiansen, Uffe
AU - Liljefors, Tommy
AU - Krogsgaard-Larsen, Povl
PY - 2002/8
Y1 - 2002/8
N2 - The GABA(A) receptor system is implicated in a number of neurological diseases, making GABA(A) receptor ligands interesting as potential therapeutic agents. Only a few different classes of structures are currently known as ligands for the GABA recognition site on the GABA(A) receptor complex, reflecting the very strict structural requirements for GABA(A) receptor recognition and activation. Within the series of compounds showing agonist activity at the GABA(A) receptor site that have been developed, most of the ligands are structurally derived from the GABA(A) agonists muscimol, THIP or isoguvacine. Using recombinant GABA(A) receptors, functional selectivity has been shown for a number of compounds such as the GABA(A)agonists imidazole-4-acetic acid and THIP, showing highly subunit-dependent potency and maximal response. In the light of the interest in partial GABA(A) receptor agonists as potential therapeutics, structure-activity studies of a number of analogues of 4-PIOL, a low-efficacy partial GABA(A) agonist, have been performed. In this connection, a series of GABA(A) ligands has been developed showing pharmacological profiles from moderately potent low-efficacy partial GABA(A) agonist activity to potent and selective antagonist effect. Only little information about direct acting GABA(A) receptor agonists in clinical studies is available. Results from clinical studies on the effect of the GABA(A) agonist THIP on human sleep pattern shows that the functional consequences of a direct acting agonist are different from those seen after administration of GABA(A) receptor modulators.
AB - The GABA(A) receptor system is implicated in a number of neurological diseases, making GABA(A) receptor ligands interesting as potential therapeutic agents. Only a few different classes of structures are currently known as ligands for the GABA recognition site on the GABA(A) receptor complex, reflecting the very strict structural requirements for GABA(A) receptor recognition and activation. Within the series of compounds showing agonist activity at the GABA(A) receptor site that have been developed, most of the ligands are structurally derived from the GABA(A) agonists muscimol, THIP or isoguvacine. Using recombinant GABA(A) receptors, functional selectivity has been shown for a number of compounds such as the GABA(A)agonists imidazole-4-acetic acid and THIP, showing highly subunit-dependent potency and maximal response. In the light of the interest in partial GABA(A) receptor agonists as potential therapeutics, structure-activity studies of a number of analogues of 4-PIOL, a low-efficacy partial GABA(A) agonist, have been performed. In this connection, a series of GABA(A) ligands has been developed showing pharmacological profiles from moderately potent low-efficacy partial GABA(A) agonist activity to potent and selective antagonist effect. Only little information about direct acting GABA(A) receptor agonists in clinical studies is available. Results from clinical studies on the effect of the GABA(A) agonist THIP on human sleep pattern shows that the functional consequences of a direct acting agonist are different from those seen after administration of GABA(A) receptor modulators.
UR - http://www.scopus.com/inward/record.url?scp=1242343047&partnerID=8YFLogxK
U2 - 10.2174/1568026023393525
DO - 10.2174/1568026023393525
M3 - Review
C2 - 12171573
AN - SCOPUS:1242343047
VL - 2
SP - 817
EP - 832
JO - Current Topics in Medicinal Chemistry
JF - Current Topics in Medicinal Chemistry
SN - 1568-0266
IS - 8
ER -