Abstract
Pasteurellosis in farmed lumpsuckers, Cyclopterus lumpus, has emerged as a serious disease in Norwegian aquaculture in recent years. Genomic characterization of the causative agent is essential in understanding the biology of the bacteria involved and in devising an efficient preventive strategy. The genomes of two clinical Pasteurella atlantica isolates were sequenced (≈2.3 Mbp), and phylogenetic analysis confirmed their position as a novel species within the Pasteurellaceae. In silico analyses revealed 11 genomic islands and 5 prophages, highlighting the potential of mobile elements as driving forces in the evolution of this species. The previously documented pathogenicity of P. atlantica is strongly supported by the current study, and 17 target genes were recognized as putative primary drivers of pathogenicity. The expression level of a predicted vaccine target, an uncharacterized adhesin protein, was significantly increased in both broth culture and following the exposure of P. atlantica to lumpsucker head kidney leucocytes. Based on in silico and functional analyses, the strongest gene target candidates will be prioritized in future vaccine development efforts to prevent future pasteurellosis outbreaks.
Original language | English |
---|---|
Article number | 1215 |
Journal | Microorganisms |
Volume | 9 |
Issue number | 6 |
Number of pages | 22 |
ISSN | 2076-2607 |
DOIs | |
Publication status | Published - 2021 |
Bibliographical note
Publisher Copyright:© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).
Keywords
- Aquaculture
- In silico analysis
- Lumpsucker
- Mobile elements
- Pasteurella atlantica
- Pathogenicity
- Phylogeny
- Vaccine
- Virulence factors