Geochemical evidence for subduction in the early Archaean from quartz-carbonate-fuchsite mineralization, Isua Supracrustal Belt, West Greenland: AGU2011 U13A-0036

Emily Catherine Pope, Minik Thorleif Rosing, Dennis K. Bird

    Research output: Contribution to conferenceConference abstract for conferenceResearch

    Abstract

    Quartz, carbonate and fuchsite (chromian muscovite) is a common metasomatic assemblage observed in orogenic gold systems, both in Phanerozoic convergent margin settings, and within supracrustal and greenstone belts of Precambrian rocks. Geologic and geochemical observations in younger orogenic systems suggest that ore-forming metasomatic fluids are derived from subduction-related devolitilization reactions, implying that orogenic Au-deposits in Archaean and Proterozoic supracrustal rock suites are related to subduction-style plate tectonics beginning early in Earth history. Justification of this metasomatic-tectonic relationship requires that 1) Phanerozoic orogenic Au-deposits form in subduction-zone environments, and 2) the geochemical similarity of Precambrian orogenic deposits to their younger counterparts is the result of having the same petrogenetic origin. Hydrogen and oxygen isotope compositions of fuchsite and quartz from auriferous mineralization in the ca. 3.8 Ga Isua Supracrustal Belt (ISB) in West Greenland, in conjunction with elevated concentrations of CO2, Cr, Al, K and silica relative to protolith assemblages, suggest that this mineralization shares a common petro-tectonic origin with Phanerozoic orogenic deposits and that this type of metasomatism is a unique result of subduction-related processes. Fuchsite from the ISB has a δ18O and δD of 7.7 to 17.9‰ and -115 to -61‰, respectively. δ18O of quartz from the same rocks is between 10.3 and 18.6‰. Muscovite-quartz oxygen isotope thermometry indicates that the mineralization occurred at 560 ± 90oC, from fluids with a δD of -73 to -49‰ and δ18O of 8.8 to 17.2‰. Calculation of isotopic fractionation during fluid-rock reactions along hypothetical fluid pathways demonstrates that these values, as well as those in younger orogenic deposits, are the result of seawater-derived fluids liberated from subducting lithosphere interacting with ultramafic rocks in the mantle wedge and lower crust, before migrating up crustal-scale vertical fracture zones. Thus, the presence of quartz-carbonate-fuchsite mineralization in the Isua supracrustal belt and other Archaean-age deposits provides strong evidence for the existence of modern-style subduction as early as 3.8 Ga.

    Original languageEnglish
    Publication date2011
    Number of pages1
    Publication statusPublished - 2011
    EventAmerican Geophysical Union Fall Meeting - San Francisco, United States
    Duration: 5 Dec 20119 Dec 2011

    Conference

    ConferenceAmerican Geophysical Union Fall Meeting
    Country/TerritoryUnited States
    CitySan Francisco
    Period05/12/201109/12/2011

    Keywords

    • Faculty of Science
    • subduction zone processes
    • stable isotope geochemistry
    • evolution of the Earth
    • Archean

    Cite this