TY - JOUR
T1 - Global-scale assessment and inter-comparison of recently developed/reprocessed microwave satellite vegetation optical depth products
AU - Li, Xiaojun
AU - Wigneron, Jean-Pierre
AU - Frappart, Frederic
AU - Fan, Lei
AU - Ciais, Philippe
AU - Fensholt, Rasmus
AU - Entekhabi, Dara
AU - Brandt, Martin
AU - Konings, Alexandra G.
AU - Liu, Xiangzhuo
AU - Wang, Mengjia
AU - Al-Yaari, Amen
AU - Moisy, Christophe
PY - 2021/2
Y1 - 2021/2
N2 - The vegetation optical depth (VOD), a vegetation index retrieved from passive or active microwave remote sensing systems, is related to the intensity of microwave extinction effects within the vegetation canopy layer. This index is only marginally impacted by effects from atmosphere, clouds and sun illumination, and thus increasingly used for ecological applications at large scales. Newly released VOD products show different abilities in monitoring vegetation features, depending on the algorithm used and the satellite frequency. VOD is increasingly sensitive to the upper vegetation layer as the frequency increases (from L-, C- to X-band), offering different capacities to monitor seasonal changes of the leafy and/or woody vegetation components, vegetation water status and aboveground biomass. This study evaluated nine recently developed/reprocessed VOD products from the AMSR2, SMOS and SMAP space-borne instruments for monitoring structural vegetation features related to phenology, height and aboveground biomass.For monitoring the seasonality of green vegetation (herbaceous and woody foliage), we found that X-VOD products, particularly from the LPDR-retrieval algorithm, outperformed the other VOD products in regions that are not densely vegetated, where they showed higher temporal correlation values with optical vegetation indices (VIs). However, LPDR X-VOD time series failed to detect changes in VOD after rainfall events whereas most other VOD products could do so, and overall daily variations are less pronounced in LPDR X-VOD. Results show that the reprocessed VODCA C- and X-VOD have almost comparable performance and VODCA C-VOD correlates better with VIs than other C-VOD products. Low frequency L-VOD, particularly the new version (V2) of SMOS-IC, show a higher temporal correlation with VIs, similar to C-VOD, in medium-densely vegetated biomes such as savannas (R similar to 0.70) than for other short vegetation types. Because the L-VOD indices are more sensitive to the non-green vegetation components (trunks and branches) than higher frequency products, they are well-correlated with aboveground biomass: (R similar to 0.91) across space between predicted and observed values for both SMOS-IC V2 and SMAP MT-DCA. However, when compared with forest canopy height, results at L-band are not systematically better than C- and X-VOD products. This revealed specific VOD retrieval issues for some ecosystems, e.g., boreal regions. It is expected that these findings can contribute to algorithm refinements, product enhancements and further developing the use of VOD for monitoring above-ground vegetation biomass, vegetation dynamics and phenology.
AB - The vegetation optical depth (VOD), a vegetation index retrieved from passive or active microwave remote sensing systems, is related to the intensity of microwave extinction effects within the vegetation canopy layer. This index is only marginally impacted by effects from atmosphere, clouds and sun illumination, and thus increasingly used for ecological applications at large scales. Newly released VOD products show different abilities in monitoring vegetation features, depending on the algorithm used and the satellite frequency. VOD is increasingly sensitive to the upper vegetation layer as the frequency increases (from L-, C- to X-band), offering different capacities to monitor seasonal changes of the leafy and/or woody vegetation components, vegetation water status and aboveground biomass. This study evaluated nine recently developed/reprocessed VOD products from the AMSR2, SMOS and SMAP space-borne instruments for monitoring structural vegetation features related to phenology, height and aboveground biomass.For monitoring the seasonality of green vegetation (herbaceous and woody foliage), we found that X-VOD products, particularly from the LPDR-retrieval algorithm, outperformed the other VOD products in regions that are not densely vegetated, where they showed higher temporal correlation values with optical vegetation indices (VIs). However, LPDR X-VOD time series failed to detect changes in VOD after rainfall events whereas most other VOD products could do so, and overall daily variations are less pronounced in LPDR X-VOD. Results show that the reprocessed VODCA C- and X-VOD have almost comparable performance and VODCA C-VOD correlates better with VIs than other C-VOD products. Low frequency L-VOD, particularly the new version (V2) of SMOS-IC, show a higher temporal correlation with VIs, similar to C-VOD, in medium-densely vegetated biomes such as savannas (R similar to 0.70) than for other short vegetation types. Because the L-VOD indices are more sensitive to the non-green vegetation components (trunks and branches) than higher frequency products, they are well-correlated with aboveground biomass: (R similar to 0.91) across space between predicted and observed values for both SMOS-IC V2 and SMAP MT-DCA. However, when compared with forest canopy height, results at L-band are not systematically better than C- and X-VOD products. This revealed specific VOD retrieval issues for some ecosystems, e.g., boreal regions. It is expected that these findings can contribute to algorithm refinements, product enhancements and further developing the use of VOD for monitoring above-ground vegetation biomass, vegetation dynamics and phenology.
KW - Vegetation optical depth
KW - SMOS-IC
KW - SMAP MT-DCA
KW - LPDR
KW - LPRM
KW - VODCA
KW - Biomass
KW - Phenology
KW - Height of vegetation
KW - Vegetation cycle
KW - SURFACE SOIL-MOISTURE
KW - EFFECTIVE SCATTERING ALBEDO
KW - FOREST CARBON STOCKS
KW - L-BAND
KW - AMSR-E
KW - EMPIRICAL-MODEL
KW - LAND SURFACES
KW - DATA SETS
KW - 1.4 GHZ
KW - SMOS
U2 - 10.1016/j.rse.2020.112208
DO - 10.1016/j.rse.2020.112208
M3 - Journal article
SN - 0034-4257
VL - 253
JO - Remote Sensing of Environment
JF - Remote Sensing of Environment
M1 - 112208
ER -