Hydrogen/Deuterium Exchange Mass Spectrometry with Integrated Electrochemical Reduction and Microchip-Enabled Deglycosylation for Epitope Mapping of Heavily Glycosylated and Disulfide-Bonded Proteins

Gerard Comamala, Camilla C. Krogh, Vibe S. Nielsen, Jörg P. Kutter, Josef Voglmeir, Kasper D. Rand*

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

17 Citations (Scopus)
25 Downloads (Pure)

Abstract

Hydrogen/deuterium exchange mass spectrometry (HDX-MS) is a recognized method to study protein conformational dynamics and interactions. Proteins encompassing post-translational modifications (PTMs), such as disulfide bonds and glycosylations, present challenges to HDX-MS, as disulfide bond reduction and deglycosylation is often required to extract HDX information from regions containing these PTMs. In-solution deglycosylation with peptide-N4-(N-acetyl-β-d-glucosaminyl)-asparagine amidase A (PNGase A) or PNGase H+ combined with chemical reduction using tris-(2-carboxyethyl)phosphine (TCEP) has previously been used for HDX-MS analysis of disulfide-linked glycoproteins. However, this workflow requires extensive manual sample preparation and consumes large amounts of enzyme. Furthermore, large amounts of TCEP and glycosidases often result in suboptimal liquid chromatography–mass spectrometry (LC–MS) performance. Here, we compare the in-solution activity of PNGase A, PNGase H+, and the newly discovered PNGase Dj under quench conditions and immobilize them onto thiol–ene microfluidic chips to create HDX-MS-compatible immobilized microfluidic enzyme reactors (IMERs). The IMERS retain deglycosylation activity, also following repeated use and long-term storage. Furthermore, we combine a PNGase Dj IMER, a pepsin IMER, and an electrochemical cell to develop an HDX-MS setup capable of efficient online disulfide-bond reduction, deglycosylation, and proteolysis. We demonstrate the applicability of this setup by mapping the epitope of a monoclonal antibody (mAb) on the heavily disulfide-bonded and glycosylated sema-domain of the tyrosine-protein kinase Met (SD c-Met). We achieve near-complete sequence coverage and extract HDX data to identify regions of SD c-Met involved in mAb binding. The described methodology thus presents an integrated and online workflow for improved HDX-MS analysis of challenging PTM-rich proteins.
Original languageEnglish
JournalAnalytical Chemistry
Volume93
Issue number49
Pages (from-to)16330–16340
ISSN0003-2700
DOIs
Publication statusPublished - 2021

Cite this