TY - JOUR
T1 - Impact of UV-C pretreatment on β-lactoglobulin hydrolysis by trypsin
T2 - Production and bioavailability of bioactive peptides
AU - Cavalcante, Keila N.
AU - Feitor, Jessica F.
AU - Morais, Sinara T.B.
AU - Nassu, Renata T.
AU - Ahrné, Lilia M.
AU - Cardoso, Daniel R.
N1 - Publisher Copyright:
© 2023 Elsevier Ltd
PY - 2023
Y1 - 2023
N2 - The effects of UV-C light irradiation and low-temperature long-time (LTLT) pasteurization on protein structural changes, degree of hydrolysis (DH) by trypsin, peptide profile of tryptic hydrolysates by MALDI-TOF/TOF-MS, and bioavailability of β-lactoglobulin were compared. Compared with native or LTLT pasteurised samples, the hydrolysis rate constant of β-lactoglobulin treated with UV-C increased significantly, implying that the protein backbone cleavage sites became more accessible, whereas thermal treatment produced aggregates that impede trypsin activity. Tryptic hydrolyses of UV-C light treated β-lactoglobulin yielded more peptides and a more diverse peptide mass profile. Six bioactive peptides were revealed in β-LG tryptic hydrolysates of UV-C-treated protein; transepithelial transport in Caco-2 cell monolayers showed intermediate in vivo transport and absorption for three (β-LG f87–91, β-LG f91–99, and β-LG f158–164). The moderate allergen peptide LSFNPTQLEEQCHI β-LG was absent after tryptic hydrolysis of UV-C-treated protein, indicating that UV-C photolysis may be a useful tool for allergenicity reduction.
AB - The effects of UV-C light irradiation and low-temperature long-time (LTLT) pasteurization on protein structural changes, degree of hydrolysis (DH) by trypsin, peptide profile of tryptic hydrolysates by MALDI-TOF/TOF-MS, and bioavailability of β-lactoglobulin were compared. Compared with native or LTLT pasteurised samples, the hydrolysis rate constant of β-lactoglobulin treated with UV-C increased significantly, implying that the protein backbone cleavage sites became more accessible, whereas thermal treatment produced aggregates that impede trypsin activity. Tryptic hydrolyses of UV-C light treated β-lactoglobulin yielded more peptides and a more diverse peptide mass profile. Six bioactive peptides were revealed in β-LG tryptic hydrolysates of UV-C-treated protein; transepithelial transport in Caco-2 cell monolayers showed intermediate in vivo transport and absorption for three (β-LG f87–91, β-LG f91–99, and β-LG f158–164). The moderate allergen peptide LSFNPTQLEEQCHI β-LG was absent after tryptic hydrolysis of UV-C-treated protein, indicating that UV-C photolysis may be a useful tool for allergenicity reduction.
U2 - 10.1016/j.idairyj.2023.105650
DO - 10.1016/j.idairyj.2023.105650
M3 - Journal article
AN - SCOPUS:85151248264
VL - 142
JO - International Dairy Journal
JF - International Dairy Journal
SN - 0958-6946
M1 - 105650
ER -