Abstract
Purpose:
PET with somatostatin receptor ligand [68Ga]Ga-DOTA-D-Phe1-Tyr3-octreotide ([68Ga]Ga-DOTA-TOC) is an established method in radiotherapy planning because of the improved detection and delineation of meningioma tissue. We investigated the diagnostic accuracy of supplementary [68Ga]Ga-DOTA-TOC PET in patients with a 3-month postoperative MRI reporting gross-total resection (GTR).
Experimental Design:
Thirty-seven patients with a histologically proven meningioma and GTR on postoperative MRI were prospectively referred to [68Ga]Ga-DOTA-TOC PET. Detection and volume measurements of [68Ga]Ga-DOTA-TOC-avid lesions in relation to the primary tumor site were recorded. Residual tumor in suspicious lesions suggested by [68Ga]Ga-DOTA-TOC PET was verified by (i) tumor recurrence/progression on subsequent MRI scans according to the Response Assessment of Neuro-Oncology criteria, (ii) subsequent histology, and (iii) follow-up [68Ga]Ga-DOTA-TOC PET scan.
Results:
Twenty-three PET scans demonstrated [68Ga]Ga-DOTA-TOC-avid lesions suspicious of residual meningioma, where 18 could be verified by (i) tumor progression on subsequent MRI scans (n = 6), (ii) histologic confirmation (n = 3), and (iii) follow-up [68Ga]Ga-DOTA-TOC PET scans confirming the initial PET findings (n = 9) after an overall median follow-up time of 17 months (range, 9–35 months). In contrast, disease recurrence was seen in only 2 of 14 patients without [68Ga]Ga-DOTA-TOC-avid lesions (P < 0.0001). The sensitivity, specificity, and diagnostic accuracy of [68Ga]Ga-DOTA-TOC PET in detecting meningioma residue was 90% [95% confidence interval (CI), 67–99], 92% (95% CI, 62–100), and 90% (95% CI, 74–98; P < 0.0001), respectively.
Conclusions:
The majority of patients with GTR on 3-month postoperative MRI may have small unrecognized meningioma residues that can be detected using [68Ga]Ga-DOTA-TOC PET.
PET with somatostatin receptor ligand [68Ga]Ga-DOTA-D-Phe1-Tyr3-octreotide ([68Ga]Ga-DOTA-TOC) is an established method in radiotherapy planning because of the improved detection and delineation of meningioma tissue. We investigated the diagnostic accuracy of supplementary [68Ga]Ga-DOTA-TOC PET in patients with a 3-month postoperative MRI reporting gross-total resection (GTR).
Experimental Design:
Thirty-seven patients with a histologically proven meningioma and GTR on postoperative MRI were prospectively referred to [68Ga]Ga-DOTA-TOC PET. Detection and volume measurements of [68Ga]Ga-DOTA-TOC-avid lesions in relation to the primary tumor site were recorded. Residual tumor in suspicious lesions suggested by [68Ga]Ga-DOTA-TOC PET was verified by (i) tumor recurrence/progression on subsequent MRI scans according to the Response Assessment of Neuro-Oncology criteria, (ii) subsequent histology, and (iii) follow-up [68Ga]Ga-DOTA-TOC PET scan.
Results:
Twenty-three PET scans demonstrated [68Ga]Ga-DOTA-TOC-avid lesions suspicious of residual meningioma, where 18 could be verified by (i) tumor progression on subsequent MRI scans (n = 6), (ii) histologic confirmation (n = 3), and (iii) follow-up [68Ga]Ga-DOTA-TOC PET scans confirming the initial PET findings (n = 9) after an overall median follow-up time of 17 months (range, 9–35 months). In contrast, disease recurrence was seen in only 2 of 14 patients without [68Ga]Ga-DOTA-TOC-avid lesions (P < 0.0001). The sensitivity, specificity, and diagnostic accuracy of [68Ga]Ga-DOTA-TOC PET in detecting meningioma residue was 90% [95% confidence interval (CI), 67–99], 92% (95% CI, 62–100), and 90% (95% CI, 74–98; P < 0.0001), respectively.
Conclusions:
The majority of patients with GTR on 3-month postoperative MRI may have small unrecognized meningioma residues that can be detected using [68Ga]Ga-DOTA-TOC PET.
Original language | English |
---|---|
Journal | Clinical Cancer Research |
Volume | 27 |
Issue number | 8 |
Pages (from-to) | 2216-2225 |
Number of pages | 10 |
ISSN | 1078-0432 |
DOIs | |
Publication status | Published - 15 Apr 2021 |