Abstract
The chemical reactivity of acyl-CoA thioesters toward nucleophiles has been demonstrated in several recent studies. Thus, intracellularly formed acyl-CoAs of xenobiotic carboxylic acids may react covalently with endogenous proteins and potentially lead to adverse effects. The purpose of this study was to investigate whether a correlation could be found between the structure of acyl-CoA thioesters and their reactivities toward the tripeptide, glutathione (ç-
Glu-Cys-Gly). The acyl-CoA thioesters of eight carboxylic acids (ibuprofen, clofibric acid, indomethacin, fenbufen, tolmetin, salicylic acid, 2-phenoxypropionic acid, and (4-chloro-2-methyl-phenoxy)acetic acid (MCPA)) were synthesized, and each acyl-CoA (0.5 mM) was incubated with glutathione (5.0 mM) in 0.1 M potassium phosphate (pH 7.4, 37 °C). All of the acyl-CoAs reacted with glutathione to form the respective acyl-S-glutathione products, with MCPA-CoA having the highest rate of conjugate formation (120 ( 10 íM/min) and ibuprofen-
CoA having the lowest (1.0 ( 0.1 íM/min). The relative reactivities of the acyl-CoAs were dependent on the substitution at the carbon atom R to the acyl carbon and on the presence of an oxygen atom in a position â to the acyl carbon and were as follows: phenoxyacetic acid > o-hydroxybenzoic acid phenoxypropionic acid > arylacetic acid derivatives > 2-methyl-2-phenoxypropionic acid 2-phenylpropionic acid. For each acyl-CoA thioester, the overall
hydrolysis rate was determined as the time-dependent formation of parent compound. A linear trend was observed when comparing the reactivities of the acyl-CoAs with glutathione with the corresponding overall hydrolysis rates. Thus, the most reactive compound (MCPA-CoA) was also the compound with the highest rate of hydrolysis and the least reactive compounds (ibuprofen-CoA, clofibryl-CoA) were also the compounds least susceptible to hydrolysis.
Glu-Cys-Gly). The acyl-CoA thioesters of eight carboxylic acids (ibuprofen, clofibric acid, indomethacin, fenbufen, tolmetin, salicylic acid, 2-phenoxypropionic acid, and (4-chloro-2-methyl-phenoxy)acetic acid (MCPA)) were synthesized, and each acyl-CoA (0.5 mM) was incubated with glutathione (5.0 mM) in 0.1 M potassium phosphate (pH 7.4, 37 °C). All of the acyl-CoAs reacted with glutathione to form the respective acyl-S-glutathione products, with MCPA-CoA having the highest rate of conjugate formation (120 ( 10 íM/min) and ibuprofen-
CoA having the lowest (1.0 ( 0.1 íM/min). The relative reactivities of the acyl-CoAs were dependent on the substitution at the carbon atom R to the acyl carbon and on the presence of an oxygen atom in a position â to the acyl carbon and were as follows: phenoxyacetic acid > o-hydroxybenzoic acid phenoxypropionic acid > arylacetic acid derivatives > 2-methyl-2-phenoxypropionic acid 2-phenylpropionic acid. For each acyl-CoA thioester, the overall
hydrolysis rate was determined as the time-dependent formation of parent compound. A linear trend was observed when comparing the reactivities of the acyl-CoAs with glutathione with the corresponding overall hydrolysis rates. Thus, the most reactive compound (MCPA-CoA) was also the compound with the highest rate of hydrolysis and the least reactive compounds (ibuprofen-CoA, clofibryl-CoA) were also the compounds least susceptible to hydrolysis.
Original language | English |
---|---|
Journal | Chemical Research in Toxicology |
Volume | 17 |
Issue number | 1 |
Pages (from-to) | 75-81 |
Number of pages | 7 |
ISSN | 0893-228X |
DOIs | |
Publication status | Published - 2004 |
Keywords
- Former Faculty of Pharmaceutical Sciences