TY - JOUR
T1 - Insulin-induced serine 22 phosphorylation of retinoid X receptor alpha is dispensable for adipogenesis in brown adipocytes
AU - Ardenkjær-Larsen, Jacob
AU - Rupar, Kaja
AU - Sinkevičiūtė, Goda
AU - Petersen, Patricia S.S.
AU - Villarroel, Julia
AU - Lundh, Morten
AU - Barrès, Romain
AU - Rabiee, Atefeh
AU - Emanuelli, Brice
PY - 2020
Y1 - 2020
N2 - Insulin action initiates a series of phosphorylation events regulating cellular differentiation, growth and metabolism. We have previously discovered, in a mass spectrometry-based phosphoproteomic study, that insulin/IGF-1 signalling induces phosphorylation of retinoid x receptor alpha (RXRα) at S22 in mouse brown pre-adipocytes. Here, we show that insulin induces the phosphorylation of RXRα at S22 in both brown precursor and mature adipocytes through a pathway involving ERK, downstream of IRS-1 and −2. We also found that RXRα S22 phosphorylation is promoted by insulin and upon re-feeding in brown adipose tissue in vivo, and that insulin-stimulated S22 phosphorylation of RXRα is dampened by diet-induced obesity. We used Rxra knockout cells re-expressing wild type (WT) or S22A non-phosphorylatable forms of RXRα to further characterize the role of S22 in brown adipocytes. Knockout of Rxra in brown pre-adipocytes resulted in decreased lipid accumulation and adipogenic gene expression during differentiation, and re-expression of RxraWT alleviated these effects. However, we observed no significant difference in cells re-expressing the RxraS22A mutant as compared with the cells re-expressing RxraWT. Furthermore, comparison of gene expression during adipogenesis in the WT and S22A re-expressing cells by RNA sequencing revealed similar transcriptomic profiles. Thus, our data propose a dispensable role for RXRα S22 phosphorylation in adipogenesis and transcription in differentiating brown pre-adipocytes.
AB - Insulin action initiates a series of phosphorylation events regulating cellular differentiation, growth and metabolism. We have previously discovered, in a mass spectrometry-based phosphoproteomic study, that insulin/IGF-1 signalling induces phosphorylation of retinoid x receptor alpha (RXRα) at S22 in mouse brown pre-adipocytes. Here, we show that insulin induces the phosphorylation of RXRα at S22 in both brown precursor and mature adipocytes through a pathway involving ERK, downstream of IRS-1 and −2. We also found that RXRα S22 phosphorylation is promoted by insulin and upon re-feeding in brown adipose tissue in vivo, and that insulin-stimulated S22 phosphorylation of RXRα is dampened by diet-induced obesity. We used Rxra knockout cells re-expressing wild type (WT) or S22A non-phosphorylatable forms of RXRα to further characterize the role of S22 in brown adipocytes. Knockout of Rxra in brown pre-adipocytes resulted in decreased lipid accumulation and adipogenic gene expression during differentiation, and re-expression of RxraWT alleviated these effects. However, we observed no significant difference in cells re-expressing the RxraS22A mutant as compared with the cells re-expressing RxraWT. Furthermore, comparison of gene expression during adipogenesis in the WT and S22A re-expressing cells by RNA sequencing revealed similar transcriptomic profiles. Thus, our data propose a dispensable role for RXRα S22 phosphorylation in adipogenesis and transcription in differentiating brown pre-adipocytes.
KW - adipose tissue
KW - insulin
KW - phosphorylation
KW - Retinoid X receptor alpha
KW - transcriptional regulation
U2 - 10.1080/21623945.2020.1747352
DO - 10.1080/21623945.2020.1747352
M3 - Journal article
C2 - 32249683
AN - SCOPUS:85082856335
VL - 9
SP - 142
EP - 152
JO - Adipocyte (Philadelphia)
JF - Adipocyte (Philadelphia)
SN - 2162-3945
IS - 1
ER -