Insulin-induced serine 22 phosphorylation of retinoid X receptor alpha is dispensable for adipogenesis in brown adipocytes

Jacob Ardenkjær-Larsen, Kaja Rupar, Goda Sinkevičiūtė, Patricia S.S. Petersen, Julia Villarroel, Morten Lundh, Romain Barrès, Atefeh Rabiee, Brice Emanuelli*

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

6 Citations (Scopus)
97 Downloads (Pure)

Abstract

Insulin action initiates a series of phosphorylation events regulating cellular differentiation, growth and metabolism. We have previously discovered, in a mass spectrometry-based phosphoproteomic study, that insulin/IGF-1 signalling induces phosphorylation of retinoid x receptor alpha (RXRα) at S22 in mouse brown pre-adipocytes. Here, we show that insulin induces the phosphorylation of RXRα at S22 in both brown precursor and mature adipocytes through a pathway involving ERK, downstream of IRS-1 and −2. We also found that RXRα S22 phosphorylation is promoted by insulin and upon re-feeding in brown adipose tissue in vivo, and that insulin-stimulated S22 phosphorylation of RXRα is dampened by diet-induced obesity. We used Rxra knockout cells re-expressing wild type (WT) or S22A non-phosphorylatable forms of RXRα to further characterize the role of S22 in brown adipocytes. Knockout of Rxra in brown pre-adipocytes resulted in decreased lipid accumulation and adipogenic gene expression during differentiation, and re-expression of RxraWT alleviated these effects. However, we observed no significant difference in cells re-expressing the RxraS22A mutant as compared with the cells re-expressing RxraWT. Furthermore, comparison of gene expression during adipogenesis in the WT and S22A re-expressing cells by RNA sequencing revealed similar transcriptomic profiles. Thus, our data propose a dispensable role for RXRα S22 phosphorylation in adipogenesis and transcription in differentiating brown pre-adipocytes.

Original languageEnglish
JournalAdipocyte (Philadelphia)
Volume9
Issue number1
Pages (from-to)142-152
Number of pages11
ISSN2162-3945
DOIs
Publication statusPublished - 2020

Keywords

  • adipose tissue
  • insulin
  • phosphorylation
  • Retinoid X receptor alpha
  • transcriptional regulation

Cite this