Abstract
Automated sorption balances are widely used for characterizing the interaction of water vapor with hygroscopic materials. These instruments provide an efficient way to collect sorption isotherm data and kinetic data. A typical method for defining equilibrium after a step change in relative humidity (RH) is using a particular threshold value for the rate of change in mass with time. Recent studies indicate that commonly used threshold values yield substantial errors and that further measurements are needed at extended hold times as a basis to assess the accuracy of abbreviated equilibration criteria. However, the mass measurement accuracy at extended times depends on the operational stability of the instrument. Published data on the stability of automated sorption balances are rare. An interlaboratory study was undertaken to investigate equilibration criteria for automated sorption balances. This paper focuses on the mass, temperature, and RH stability and includes data from 25 laboratories throughout the world. An initial target for instrument mass stability was met on the first attempt in many cases, but several instruments were found to have unexpectedly large instabilities. The sources of these instabilities were investigated and greatly reduced. This paper highlights the importance of verifying operational mass stability of automated sorption balances, gives a method to perform stability checks, and provides guidance on identifying and correcting common sources of mass instability.
Original language | English |
---|---|
Journal | Adsorption |
Volume | 30 |
Pages (from-to) | 1663–1674 |
ISSN | 0929-5607 |
DOIs | |
Publication status | Published - 2024 |
Bibliographical note
Publisher Copyright: This article is licensed under a Creative Commons Attribution4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Keywords
- Interlaboratory investigation
- Measurement uncertainty
- Water vapor sorption