TY - JOUR
T1 - Involvement of Oxytocin and Progesterone Receptor Expression in the Etiology of Canine Uterine Inertia
AU - Jungmann, Carolin
AU - Houghton, Caroline Gauguin
AU - Nielsen, Frederik Goth
AU - Packeiser, Eva Maria
AU - Körber, Hanna
AU - Reichler, Iris M.
AU - Balogh, Orsolya
AU - Goericke-Pesch, Sandra
N1 - Publisher Copyright:
© 2022 by the authors.
PY - 2022
Y1 - 2022
N2 - An altered oxytocin and progesterone receptor (OXTR and PGR, respectively) expression was postulated in canine uterine inertia (UI), which is the lack of functional myometrial contractions. OXTR and PGR expressions were compared in uterine tissue obtained during C-section due to primary UI (PUI; n = 12) and obstructive dystocia (OD, n = 8). In PUI, the influence of litter size was studied (small/normal/large litter: PUI-S/N/L: n = 5/4/3). Staining intensity in immunohistochemistry was scored for the longitudinal and circular myometrial layer and summarized per dog (IP-Myoscore). Mean P4 did not differ significantly between PUI (n = 9) and OD (n = 7). OXTR and PGR expressions (ratios) were significantly higher in PUI (OXTR: p = 0.0019; PGR: p = 0.0339), also for OXTR in PUI-N versus OD (p = 0.0034). A trend for a higher PGR IP-Myoscore was identified (PUI-N vs. OD, p = 0.0626) as well as an influence of litter size (lowest PGR-Myoscore in PUI-L, p = 0.0391). In conclusion, PUI was not related to higher P4, but potentially increased PGR availability compared to OD. It remains to be clarified whether OXTR is upregulated in PUI due to a counterregulatory mechanism to overcome myometrial quiescence or downregulated in OD due to physiological slow OXTR desensitization associated with an advanced duration of labor. Identified OXTR differences between myometrial layers indicate the need for further research.
AB - An altered oxytocin and progesterone receptor (OXTR and PGR, respectively) expression was postulated in canine uterine inertia (UI), which is the lack of functional myometrial contractions. OXTR and PGR expressions were compared in uterine tissue obtained during C-section due to primary UI (PUI; n = 12) and obstructive dystocia (OD, n = 8). In PUI, the influence of litter size was studied (small/normal/large litter: PUI-S/N/L: n = 5/4/3). Staining intensity in immunohistochemistry was scored for the longitudinal and circular myometrial layer and summarized per dog (IP-Myoscore). Mean P4 did not differ significantly between PUI (n = 9) and OD (n = 7). OXTR and PGR expressions (ratios) were significantly higher in PUI (OXTR: p = 0.0019; PGR: p = 0.0339), also for OXTR in PUI-N versus OD (p = 0.0034). A trend for a higher PGR IP-Myoscore was identified (PUI-N vs. OD, p = 0.0626) as well as an influence of litter size (lowest PGR-Myoscore in PUI-L, p = 0.0391). In conclusion, PUI was not related to higher P4, but potentially increased PGR availability compared to OD. It remains to be clarified whether OXTR is upregulated in PUI due to a counterregulatory mechanism to overcome myometrial quiescence or downregulated in OD due to physiological slow OXTR desensitization associated with an advanced duration of labor. Identified OXTR differences between myometrial layers indicate the need for further research.
KW - dog
KW - dystocia
KW - oxytocin receptor
KW - progesterone receptor
KW - uterine inertia
U2 - 10.3390/ijms232113601
DO - 10.3390/ijms232113601
M3 - Journal article
C2 - 36362391
AN - SCOPUS:85141557499
SN - 1661-6596
VL - 23
JO - International Journal of Molecular Sciences
JF - International Journal of Molecular Sciences
IS - 21
M1 - 13601
ER -