Isolation of Functional Human MCT Transporters in Saccharomyces cerevisiae

Hajira Ahmed Hotiana, Karl Patric Nordlin, Kamil Gotfryd, Per Amstrup Pedersen, Pontus Gourdon*

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

Human monocarboxylate transporters (hMCTs) belong to the solute carrier 16 (SLC16) family of proteins and are responsible for the bi-directional transport of various metabolites, including monocarboxylates, hormones, and aromatic amino acids. Hence, the metabolic role of hMCTs is undisputable, as they are directly involved in providing nutrients for oxidation and gluconeogenesis as well as participate in circulation of iodothyronines. However, due to the difficulty in obtaining suitable amounts of stable hMCT samples, the structural information available for these transporters is limited, hindering the development of effective therapeutics. Here we provide a straightforward, cost-effective strategy for the overproduction of hMCTs using a whole-cell Saccharomyces cerevisiae-based system. Our results indicate that this platform is able to provide three hMCTs, i.e., hMCT1 and hMCT4 (monocarboxylate transporters), and hMCT10 (an aromatic amino acid transporter). hMCT1 and hMCT10 are recovered in the quantity and quality required for downstream structural and functional characterization. Overall, our findings demonstrate the suitability of this platform to deliver physiologically relevant membrane proteins for biophysical studies.

Original languageEnglish
Article number1585
JournalCells
Volume13
Issue number18
Number of pages17
ISSN2073-4409
DOIs
Publication statusPublished - 2024

Bibliographical note

Publisher Copyright:
© 2024 by the authors.

Keywords

  • aromatic amino acid transporters
  • human metabolism
  • human monocarboxylate transporters (hMCTs)
  • membrane proteins
  • overproduction
  • production platform
  • protein purification
  • Saccharomyces cerevisiae
  • solute carrier 16 (SLC16) family
  • yeast

Cite this