KUCST at CheckThat 2023: How good can we be with a generic model?

Research output: Working paperPreprintResearch

8 Downloads (Pure)

Abstract

In this paper we present our method for tasks 2 and 3A at the CheckThat2023 shared task. We make use of a generic approach that has been used to tackle a diverse set of tasks, inspired by authorship attribution and profiling. We train a number of Machine Learning models and our results show that Gradient Boosting performs the best for both tasks. Based on the official ranking provided by the shared task organizers, our model shows an average performance compared to other teams.
Original languageEnglish
Number of pages8
Publication statusPublished - 2023

Cite this