LKB1 regulates lipid oxidation during exercise independently of AMPK

Jacob Fuglsbjerg Jeppesen, Stine Just Maarbjerg, Andreas Børsting Jordy, Andreas Mæchel Fritzen, Christian Pehmøller, Lykke Sylow, Annette Karen Lundbeck Serup, Niels Jessen, Kasper Thorsen, Clara Prats Gavalda, Klaus Qvortrup, Jason R B Dyck, Roger W Hunter, Kei Sakamoto, David M Thomson, Peter Schjerling, Jørgen Wojtaszewski, Erik A. Richter, Bente Kiens

Research output: Contribution to journalJournal articleResearchpeer-review

62 Citations (Scopus)

Abstract

Lipid metabolism is important for health and insulin action, yet the fundamental process of regulating lipid metabolism during muscle contraction is incompletely understood. Here, we show that LKB1 muscle-specific knockout (LKB1 MKO) mice display decreased fatty acid (FA) oxidation during treadmill exercise. LKB1 MKO mice also show decreased muscle SIK3 activity, increased histone deacetylase 4 expression, decreased NAD(+) concentration and SIRT1 activity, and decreased expression of genes involved in FA oxidation. In AMPKa2 KO mice, substrate use was similar to that in WT mice, which excluded that decreased FA oxidation in LKB1 MKO mice was due to decreased AMPKa2 activity. Additionally, LKB1 MKO muscle demonstrated decreased FA oxidation in vitro. A markedly decreased phosphorylation of TBC1D1, a proposed regulator of FA transport, and a low CoA content could contribute to the low FA oxidation in LKB1 MKO. LKB1 deficiency did not reduce muscle glucose uptake or oxidation during exercise in vivo, excluding a general impairment of substrate use during exercise in LKB1 MKO mice. Our findings demonstrate that LKB1 is a novel molecular regulator of major importance for FA oxidation but not glucose uptake in muscle during exercise.
Original languageEnglish
JournalDiabetes
Volume62
Issue number5
Pages (from-to)1490-1499
Number of pages10
ISSN0012-1797
DOIs
Publication statusPublished - 2013

Cite this