TY - JOUR
T1 - Microstructural and Chemical Investigations of Presolar Silicates from Diverse Stellar Environments
AU - Sanghani, Manish N.
AU - Lajaunie, Luc
AU - Marhas, Kuljeet Kaur
AU - Rickard, William D. A.
AU - Hsiao, Silver Sung-Yun
AU - Peeters, Zan
AU - Shang, Hsien
AU - Lee, Der-Chuen
AU - Calvino, Jose J.
AU - Bizzarro, Martin
PY - 2022
Y1 - 2022
N2 - We report the structural and chemical investigation of nine presolar silicate grains from the CH3/CB(b)3 chondrite Isheyevo and CR2 chondrite Northwest Africa (NWA) 801. Five of these grains belong to group 1, likely condensed in low- to intermediate-mass asymptotic giant branch (AGB) stars, super-AGB stars, or core-collapse supernovae, while the remaining four grains belong to group 4 and have a supernova origin. The advanced transmission electron microscopy and associated electron spectroscopy analyses show a diverse range of chemical and structural compositions for presolar silicates. Two GEMS (glass with embedded metal and sulfide)-like silicates, each from different groups, condensed under nonequilibrium conditions in stellar outflows. Two nonstoichiometric silicates from group 1 have dissimilar formation and alteration histories. An amorphous silicate from group 1 with olivine-like [(Mg,Fe)(2)SiO4] composition likely formed as a crystalline olivine that subsequently amorphized in the interstellar medium. An oldhamite (CaS) grain within a stoichiometric enstatite (MgSiO3) from group 1 probably formed by heterogeneous condensation in circumstellar outflows. Of the two crystalline grains from group 4, one is an antigorite [(Mg,Fe)(3)Si2O5(OH)(4)], while the other is a nontronite [Na,Fe-2(Si,Al)(4)O-10(OH)(2).nH(2)O], both formed as a crystalline forsterite and later altered to have hydrated silicate composition. A group-4 silicate has a chemical composition similar to a low Ca-pyroxene [(Ca,Mg)(Si,Al)(2)O-6]. Our data imply that presolar grains from different groups can have a similar range of grain-formation conditions.
AB - We report the structural and chemical investigation of nine presolar silicate grains from the CH3/CB(b)3 chondrite Isheyevo and CR2 chondrite Northwest Africa (NWA) 801. Five of these grains belong to group 1, likely condensed in low- to intermediate-mass asymptotic giant branch (AGB) stars, super-AGB stars, or core-collapse supernovae, while the remaining four grains belong to group 4 and have a supernova origin. The advanced transmission electron microscopy and associated electron spectroscopy analyses show a diverse range of chemical and structural compositions for presolar silicates. Two GEMS (glass with embedded metal and sulfide)-like silicates, each from different groups, condensed under nonequilibrium conditions in stellar outflows. Two nonstoichiometric silicates from group 1 have dissimilar formation and alteration histories. An amorphous silicate from group 1 with olivine-like [(Mg,Fe)(2)SiO4] composition likely formed as a crystalline olivine that subsequently amorphized in the interstellar medium. An oldhamite (CaS) grain within a stoichiometric enstatite (MgSiO3) from group 1 probably formed by heterogeneous condensation in circumstellar outflows. Of the two crystalline grains from group 4, one is an antigorite [(Mg,Fe)(3)Si2O5(OH)(4)], while the other is a nontronite [Na,Fe-2(Si,Al)(4)O-10(OH)(2).nH(2)O], both formed as a crystalline forsterite and later altered to have hydrated silicate composition. A group-4 silicate has a chemical composition similar to a low Ca-pyroxene [(Ca,Mg)(Si,Al)(2)O-6]. Our data imply that presolar grains from different groups can have a similar range of grain-formation conditions.
KW - LOSS SPECTROSCOPY EELS
KW - CRYSTALLINE SILICATE
KW - EVOLVED STARS
KW - SOLAR NEIGHBORHOOD
KW - SUPERNOVA REMNANT
KW - MINERAL FORMATION
KW - OXIDE GRAINS
KW - DUST
KW - CIRCUMSTELLAR
KW - CONDENSATION
U2 - 10.3847/1538-4357/ac3332
DO - 10.3847/1538-4357/ac3332
M3 - Journal article
VL - 925
JO - Astrophysical Journal
JF - Astrophysical Journal
SN - 0004-637X
IS - 2
M1 - 110
ER -