Abstract
Neuronal signaling in the central nervous system (CNS) associates with release of K+ into the extracellular space resulting in transient increases in [K+]o. This elevated K+ is swiftly removed, in part, via uptake by neighboring glia cells. This process occurs in parallel to the [K+]o elevation and glia cells thus act as K+ sinks during the neuronal activity, while releasing it at the termination of the pulse. The molecular transport mechanisms governing this glial K+ absorption remain a point of debate. Passive distribution of K+ via Kir4.1-mediated spatial buffering of K+ has become a favorite within the glial field, although evidence for a quantitatively significant contribution from this ion channel to K+ clearance from the extracellular space is sparse. The Na+/K+-ATPase, but not the Na+/K+/Cl− cotransporter, NKCC1, shapes the activity-evoked K+ transient. The different isoform combinations of the Na+/K+-ATPase expressed in glia cells and neurons display different kinetic characteristics and are thereby distinctly geared toward their temporal and quantitative contribution to K+ clearance. The glia cell swelling occurring with the K+ transient was long assumed to be directly associated with K+ uptake and/or AQP4, although accumulating evidence suggests that they are not. Rather, activation of bicarbonate- and lactate transporters appear to lead to glial cell swelling via the activity-evoked alkaline transient, K+-mediated glial depolarization, and metabolic demand. This review covers evidence, or lack thereof, accumulated over the last half century on the molecular mechanisms supporting activity-evoked K+ and extracellular space dynamics.
Original language | English |
---|---|
Journal | Glia |
Volume | 68 |
Issue number | 11 |
Pages (from-to) | 2192-2211 |
Number of pages | 20 |
ISSN | 0894-1491 |
DOIs | |
Publication status | Published - 2020 |
Keywords
- extracellular space shrinkage
- glia
- glia cell swelling
- K clearance
- Kir4.1
- Na/K-ATPase
- NKCC1
- spatial buffering