Motor-enriched learning activities can improve mathematical performance in preadolescent children

Mikkel Malling Beck, Rune Rasmussen Lind, Svend Sparre Geertsen, Christian Ritz, Jesper Lundbye-Jensen, Jacob Wienecke

Research output: Contribution to journalJournal articleResearchpeer-review

77 Citations (Scopus)
465 Downloads (Pure)

Abstract

Objective: An emerging field of research indicates that physical activity can benefit cognitive functions and academic achievements in children. However, less is known about how academic achievements can benefit from specific types of motor activities (e.g., fine and gross) integrated into learning activities. Thus, the aim of this study was to investigate whether fine or gross motor activity integrated into math lessons (i.e., motor-enrichment) could improve children's mathematical performance.

Methods: A 6-week within school cluster-randomized intervention study investigated the effects of motor-enriched mathematical teaching in Danish preadolescent children (n = 165, age = 7.5 ± 0.02 years). Three groups were included: a control group (CON), which received non-motor enriched conventional mathematical teaching, a fine motor math group (FMM) and a gross motor math group (GMM), which received mathematical teaching enriched with fine and gross motor activity, respectively. The children were tested before (T0), immediately after (T1) and 8 weeks after the intervention (T2). A standardized mathematical test (50 tasks) was used to evaluate mathematical performance. Furthermore, it was investigated whether motor-enriched math was accompanied by different effects in low and normal math performers. Additionally, the study investigated the potential contribution of cognitive functions and motor skills on mathematical performance.

Results: All groups improved their mathematical performance from T0 to T1. However, from T0 to T1, the improvement was significantly greater in GMM compared to FMM (1.87 ± 0.71 correct answers) (p = 0.02). At T2 no significant differences in mathematical performance were observed. A subgroup analysis revealed that normal math-performers benefitted from GMM compared to both CON 1.78 ± 0.73 correct answers (p = 0.04) and FMM 2.14 ± 0.72 correct answers (p = 0.008). These effects were not observed in low math-performers. The effects were partly accounted for by visuo-spatial short-term memory and gross motor skills.

Conclusion: The study demonstrates that motor enriched learning activities can improve mathematical performance. In normal math performers GMM led to larger improvements than FMM and CON. This was not the case for the low math performers. Future studies should further elucidate the neurophysiological mechanisms underlying the observed behavioral effects.
Original languageEnglish
Article number645
JournalFrontiers in Human Neuroscience
Volume10
Number of pages14
ISSN1662-5161
DOIs
Publication statusPublished - 2016

Keywords

  • Faculty of Science
  • Children
  • Motor skilld
  • Exercise
  • Integrated physical activity
  • Academic achievement
  • Cognition
  • Learning

Cite this