Mte1 interacts with Mph1 and promotes crossover recombination and telomere maintenance

Sonia Cristina Pinela da Silva, Veronika Altmannova, Sarah Luke-Glaser, Peter Henriksen, Irene Gallina, Xuejiao Yang, Chuna Ram Choudhary, Brian Luke, Lumir Krejci, Michael Lisby

Research output: Contribution to journalJournal articleResearchpeer-review

22 Citations (Scopus)
358 Downloads (Pure)

Abstract

Mph1 is a member of the conserved FANCM family of DNA motor proteins that play key roles in genome maintenance processes underlying Fanconi anemia, a cancer predisposition syndrome in humans. Here, we identify Mte1 as a novel interactor of the Mph1 helicase in Saccharomyces cerevisiae. In vitro, Mte1 (Mph1-associated telomere maintenance protein 1) binds directly to DNA with a preference for branched molecules such a D loops and fork structures. In addition, Mte1 stimulates the helicase and fork regression activities of Mph1 while inhibiting the ability of Mph1 to dissociate recombination intermediates. Deletion of MTE1 reduces crossover recombination and suppresses the sensitivity of mph1Δ mutant cells to replication stress. Mph1 and Mte1 interdependently colocalize at DNA damage-induced foci and dysfunctional telomeres, and MTE1 deletion results in elongated telomeres. Taken together, our data indicate that Mte1 plays a role in regulation of crossover recombination, response to replication stress, and telomere maintenance.

Original languageEnglish
JournalGenes & Development
Volume30
Issue number6
Pages (from-to)700-717
Number of pages18
ISSN0890-9369
DOIs
Publication statusPublished - 2016

Cite this