Nitric oxide-induced ribosome collision activates ribosomal surveillance mechanisms

Laura Ryder, Frederic Schrøder Arendrup, José Francisco Martínez, Goda Snieckute, Chiara Pecorari, Riyaz Ahmad Shah, Anders H. Lund, Melanie Blasius, Simon Bekker-Jensen

Research output: Contribution to journalJournal articleResearchpeer-review

5 Citations (Scopus)
20 Downloads (Pure)

Abstract

Impairment of protein translation can cause stalling and collision of ribosomes and is a signal for the activation of ribosomal surveillance and rescue pathways. Despite clear evidence that ribosome collision occurs stochastically at a cellular and organismal level, physiologically relevant sources of such aberrations are poorly understood. Here we show that a burst of the cellular signaling molecule nitric oxide (NO) reduces translational activity and causes ribosome collision in human cell lines. This is accompanied by activation of the ribotoxic stress response, resulting in ZAKα-mediated activation of p38 and JNK kinases. In addition, NO production is associated with ZNF598-mediated ubiquitination of the ribosomal protein RPS10 and GCN2-mediated activation of the integrated stress response, which are well-described responses to the collision of ribosomes. In sum, our work implicates a novel role of NO as an inducer of ribosome collision and activation of ribosomal surveillance mechanisms in human cells.
Original languageEnglish
Article number467
JournalCell Death & Disease
Volume14
Issue number7
Number of pages10
ISSN2041-4889
DOIs
Publication statusPublished - 2023

Cite this