On the Geometry Dependence of the NMR Chemical Shift of Mercury in Thiolate Complexes: A Relativistic DFT Study

Haide Wu, Lars Bo Stegeager Hemmingsen, Stephan P. A. Sauer*

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

2 Citations (Scopus)
17 Downloads (Pure)

Abstract

Thiolate containing mercury(II) complexes of the general formula [Hg(SR)n]2−n have been of great interest since the toxicity of mercury was recognized. 199Hg nuclear magnetic resonance spectroscopy (NMR) is a powerful tool for characterization of mercury complexes. In this work, the Hg shielding constants in a series of [Hg(SR)n]2−n complexes are therefore investigated computationally with particular emphasis on their geometry dependence. Geometry optimizations and NMR chemical shift calculations are performed at the density functional theory (DFT) level with both the zeroth-order regular approximation (ZORA) and four-component relativistic methods. The four exchange-correlation (XC) functionals PBE0, PBE, B3LYP and BLYP are used in combination with either Dyall’s Gaussian-type (GTO) or Slater-type orbitals (STOs) basis sets. Comparing ZORA and four-component calculations, one observes that the calculated shielding constants for a given molecular geometry have a constant difference of ∼1070 ppm. This confirms that ZORA is an acceptable relativistic method to compute NMR chemical shifts. The combinations of 4-component/PBE0/v3z and ZORA/PBE0/QZ4P are applied to explore the geometry dependence of the isotropic shielding. For a given coordination number the distance between mercury and sulfur is the key factor affecting the shielding constant, while changes in bond and dihedral angles and even different side groups have relatively little impact.
Original languageEnglish
JournalMagnetic Resonance in Chemistry
Volume62
Issue number9
Pages (from-to)648-669
Number of pages22
ISSN0749-1581
DOIs
Publication statusPublished - 2024

Keywords

  • Faculty of Science
  • NMR
  • mercury
  • ZORA
  • Relativistic Effects
  • 4-Component Calculations
  • Density Functional Theory

Cite this