Phage s144, a new polyvalent phage infecting salmonella spp. And cronobacter sakazakii

Michela Gambino, Anders Nørgaard Sørensen, Stephen Ahern, Georgios Smyrlis, Yilmaz Emre Gencay, Hanne Hendrix, Horst Neve, Jean Paul Noben, Rob Lavigne, Lone Brøndsted*

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

22 Citations (Scopus)
125 Downloads (Pure)

Abstract

Phages are generally considered species-or even strain-specific, yet polyvalent phages are able to infect bacteria from different genera. Here, we characterize the novel polyvalent phage S144, a member of the Loughboroughvirus genus. By screening 211 Enterobacteriaceae strains, we found that phage S144 forms plaques on specific serovars of Salmonella enterica subsp. enterica and on Cronobacter sakazakii. Analysis of phage resistant mutants suggests that the O-antigen of lipopolysaccharide is the phage receptor in both bacterial genera. The S144 genome consists of 53,628 bp and encodes 80 open reading frames (ORFs), but no tRNA genes. In total, 32 ORFs coding for structural proteins were confirmed by ESI-MS/MS analysis, whereas 45 gene products were functionally annotated within DNA metabolism, packaging, nucleotide biosynthesis and phage morphogenesis. Transmission electron microscopy showed that phage S144 is a myovirus, with a prolate head and short tail fibers. The putative S144 tail fiber structure is, overall, similar to the tail fiber of phage Mu and the C-terminus shows amino acid similarity to tail fibers of otherwise unrelated phages infecting Cronobacter. Since all phages in the Loughboroughvirus genus encode tail fibers similar to S144, we suggest that phages in this genus infect Cronobacter sakazakii and are polyvalent.

Original languageEnglish
Article number5196
JournalInternational Journal of Molecular Sciences
Volume21
Issue number15
Number of pages42
ISSN1661-6596
DOIs
Publication statusPublished - 2020

Keywords

  • Enterobacteriaceae
  • Phage
  • Polyvalent

Cite this