TY - JOUR
T1 - Physiological responding to stress in middle-aged males enriched for longevity
T2 - a social stress study
AU - Jansen, Steffy W M
AU - van Heemst, Diana
AU - van der Grond, Jeroen
AU - Westendorp, Rudi
AU - Oei, Nicole Y L
PY - 2016
Y1 - 2016
N2 - Individuals enriched for familial longevity display a lower prevalence of age-related diseases, such as cardiovascular- and metabolic diseases. Since these diseases are associated with stress and increased cortisol levels, one of the underlying mechanisms that may contribute to healthy longevity might be a more adaptive response to stress. To investigate this, male middle-aged offspring from long-lived families (n = 31) and male non-offspring (with no familial history of longevity) (n = 26) were randomly allocated to the Trier Social Stress Test or a control condition in an experimental design. Physiological (cortisol, blood pressure, heart rate) and subjective responses were measured during the entire procedure. The results showed that Offspring had lower overall cortisol levels compared to Non-offspring regardless of condition, and lower absolute cortisol output (AUCg) during stress compared to Non-Offspring, while the increase (AUCi) did not differ between groups. In addition, systolic blood pressure in Offspring was lower compared to Non-offspring during the entire procedure. At baseline, Offspring had significantly lower systolic blood pressure and reported less subjective stress than Non-offspring and showed a trend towards lower heart rate. Offspring from long-lived families might thus be less stressed prior to potentially stressful events and consequently show overall lower levels in physiological responses. Although attenuated physiological responding cannot be ruled out, lower starting points and a lower peak level in physiological responding when confronted with an actual stressor, might already limit damage due to stress over a lifetime. Lower physiological responding may also contribute to the lower prevalence of cardiovascular diseases and other stress-related diseases in healthy longevity.
AB - Individuals enriched for familial longevity display a lower prevalence of age-related diseases, such as cardiovascular- and metabolic diseases. Since these diseases are associated with stress and increased cortisol levels, one of the underlying mechanisms that may contribute to healthy longevity might be a more adaptive response to stress. To investigate this, male middle-aged offspring from long-lived families (n = 31) and male non-offspring (with no familial history of longevity) (n = 26) were randomly allocated to the Trier Social Stress Test or a control condition in an experimental design. Physiological (cortisol, blood pressure, heart rate) and subjective responses were measured during the entire procedure. The results showed that Offspring had lower overall cortisol levels compared to Non-offspring regardless of condition, and lower absolute cortisol output (AUCg) during stress compared to Non-Offspring, while the increase (AUCi) did not differ between groups. In addition, systolic blood pressure in Offspring was lower compared to Non-offspring during the entire procedure. At baseline, Offspring had significantly lower systolic blood pressure and reported less subjective stress than Non-offspring and showed a trend towards lower heart rate. Offspring from long-lived families might thus be less stressed prior to potentially stressful events and consequently show overall lower levels in physiological responses. Although attenuated physiological responding cannot be ruled out, lower starting points and a lower peak level in physiological responding when confronted with an actual stressor, might already limit damage due to stress over a lifetime. Lower physiological responding may also contribute to the lower prevalence of cardiovascular diseases and other stress-related diseases in healthy longevity.
U2 - 10.3109/10253890.2015.1105213
DO - 10.3109/10253890.2015.1105213
M3 - Journal article
C2 - 26453529
VL - 19
SP - 28
EP - 36
JO - Stress: The International Journal on the Biology of Stress
JF - Stress: The International Journal on the Biology of Stress
SN - 1025-3890
IS - 1
ER -