TY - JOUR
T1 - Predicting weight loss success on a new Nordic diet
T2 - an untargeted multi-platform metabolomics and machine learning approach
AU - Pigsborg, Kristina
AU - Stentoft-Larsen, Valdemar
AU - Demharter, Samuel
AU - Aldubayan, Mona Adnan
AU - Trimigno, Alessia
AU - Khakimov, Bekzod
AU - Engelsen, Søren Balling
AU - Astrup, Arne
AU - Hjorth, Mads Fiil
AU - Dragsted, Lars Ove
AU - Magkos, Faidon
N1 - Publisher Copyright:
Copyright © 2023 Pigsborg, Stentoft-Larsen, Demharter, Aldubayan, Trimigno, Khakimov, Engelsen, Astrup, Hjorth, Dragsted and Magkos.
PY - 2023
Y1 - 2023
N2 - Background and aim: Results from randomized controlled trials indicate that no single diet performs better than other for all people living with obesity. Regardless of the diet plan, there is always large inter-individual variability in weight changes, with some individuals losing weight and some not losing or even gaining weight. This raises the possibility that, for different individuals, the optimal diet for successful weight loss may differ. The current study utilized machine learning to build a predictive model for successful weight loss in subjects with overweight or obesity on a New Nordic Diet (NND). Methods: Ninety-one subjects consumed an NND ad libitum for 26 weeks. Based on their weight loss, individuals were classified as responders (weight loss ≥5%, n = 46) or non-responders (weight loss <2%, n = 24). We used clinical baseline data combined with baseline urine and plasma untargeted metabolomics data from two different analytical platforms, resulting in a data set including 2,766 features, and employed symbolic regression (QLattice) to develop a predictive model for weight loss success. Results: There were no differences in clinical parameters at baseline between responders and non-responders, except age (47 ± 13 vs. 39 ± 11 years, respectively, p = 0.009). The final predictive model for weight loss contained adipic acid and argininic acid from urine (both metabolites were found at lower levels in responders) and generalized from the training (AUC 0.88) to the test set (AUC 0.81). Responders were also able to maintain a weight loss of 4.3% in a 12 month follow-up period. Conclusion: We identified a model containing two metabolites that were able to predict the likelihood of achieving a clinically significant weight loss on an ad libitum NND. This work demonstrates that models based on an untargeted multi-platform metabolomics approach can be used to optimize precision dietary treatment for obesity.
AB - Background and aim: Results from randomized controlled trials indicate that no single diet performs better than other for all people living with obesity. Regardless of the diet plan, there is always large inter-individual variability in weight changes, with some individuals losing weight and some not losing or even gaining weight. This raises the possibility that, for different individuals, the optimal diet for successful weight loss may differ. The current study utilized machine learning to build a predictive model for successful weight loss in subjects with overweight or obesity on a New Nordic Diet (NND). Methods: Ninety-one subjects consumed an NND ad libitum for 26 weeks. Based on their weight loss, individuals were classified as responders (weight loss ≥5%, n = 46) or non-responders (weight loss <2%, n = 24). We used clinical baseline data combined with baseline urine and plasma untargeted metabolomics data from two different analytical platforms, resulting in a data set including 2,766 features, and employed symbolic regression (QLattice) to develop a predictive model for weight loss success. Results: There were no differences in clinical parameters at baseline between responders and non-responders, except age (47 ± 13 vs. 39 ± 11 years, respectively, p = 0.009). The final predictive model for weight loss contained adipic acid and argininic acid from urine (both metabolites were found at lower levels in responders) and generalized from the training (AUC 0.88) to the test set (AUC 0.81). Responders were also able to maintain a weight loss of 4.3% in a 12 month follow-up period. Conclusion: We identified a model containing two metabolites that were able to predict the likelihood of achieving a clinically significant weight loss on an ad libitum NND. This work demonstrates that models based on an untargeted multi-platform metabolomics approach can be used to optimize precision dietary treatment for obesity.
KW - machine learning
KW - metabolomics
KW - new Nordic diet
KW - obesity
KW - precision nutrition
U2 - 10.3389/fnut.2023.1191944
DO - 10.3389/fnut.2023.1191944
M3 - Journal article
C2 - 37599689
AN - SCOPUS:85168291403
VL - 10
JO - Frontiers in Nutrition
JF - Frontiers in Nutrition
SN - 2296-861X
M1 - 1191944
ER -