Abstract
We have estimated the activation energy for hydrogen abstraction by compound I in cytochrome P450 for a diverse set of 24 small organic substrates using state-of-the-art density functional theory (B3LYP). We then show that these results can be reproduced by computationally less demanding methods, for example, by using small organic mimics of compound I with both B3LYP and the semiempirical AM1 method (mean absolute error of 3-4 kJ/mol) or by calculating the bond dissociation energy, without relaxation of the radical (B3LYP) or estimated from three-point fit to a Morse potential (AM1; errors of 4 and 5 kJ/mol, respectively). We can assign activation energies of 74, 61, 53, 47, and 30 kJ/mol to primary carbons, secondary/tertiary carbons, carbons with adjacent sp(2) or aromatic groups, ethers/thioethers, and amines, respectively, which gives a very simple and predictive model. Finally, some of the less demanding methods are applied to study the CYP3A4 metabolism of progesterone and dextromethorphan.
Original language | English |
---|---|
Journal | Journal of Medicinal Chemistry |
Volume | 49 |
Issue number | 22 |
Pages (from-to) | 6489-6499 |
ISSN | 0022-2623 |
DOIs | |
Publication status | Published - 2006 |
Keywords
- Former Faculty of Pharmaceutical Sciences