Protein kinase A stimulates Kv7.1 surface expression by regulating Nedd4-2-dependent endocytic trafficking

Martin Nybo Andersen, Louise Leth Hefting, Annette Buur Steffensen, Nicole Schmitt, Søren-Peter Olesen, Jesper Velgaard Olsen, Alicia Lundby, Hanne Borger Rasmussen

Research output: Contribution to journalJournal articleResearchpeer-review

7 Citations (Scopus)

Abstract

The potassium channel Kv7.1 plays critical physiological roles in both heart and epithelial tissues. In heart, Kv7.1 and the accessory subunit KCNE1 forms the IKs current, which is enhanced by PKA mediated phosphorylation. The observed current increase requires both phosphorylation of Kv7.1 and the presence of KCNE1. However, PKA also stimulates Kv7.1 currents in epithelial tissues, such as colon, where the channel does not co-assemble with KCNE1. Here, we demonstrate that PKA activity significantly impacts the subcellular localization of Kv7.1 in Madin Darby Canine Kidney cells. While PKA inhibition reduced the fraction of channels at the cell surface, PKA activation increased it. We show that PKA inhibition lead to intracellular accumulation of Kv7.1 in late endosomes/lysosomes. By mass spectroscopy we identified eight phosphorylated residues on Kv7.1, however, none appeared to play a role in the observed response. Instead, we found that PKA acted by regulating endocytic trafficking involving the ubiquitin ligase Nedd4-2. We show that a Nedd4-2 resistant Kv7.1-mutant displayed significantly reduced intracellular accumulation upon PKA inhibition. Similar effects were observed upon siRNA knockdown of Nedd4-2. However, although Nedd4-2 is known to regulate Kv7.1 by ubiquitylation, biochemical analyses demonstrated that PKA did not influence the amount of Nedd4-2 bound to Kv7.1 or the ubiquitylation level of the channel. This suggests that PKA influences Nedd4-2-dependent Kv7.1 transport though a different molecular mechanism. In summary, we identify a novel mechanism whereby PKA can increase Kv7.1 current levels, namely by regulating Nedd4-2 dependent Kv7.1 transport.

Original languageEnglish
JournalAmerican Journal of Physiology: Cell Physiology
Volume309
Issue number10
Pages (from-to)C693-C706
Number of pages14
ISSN0363-6143
DOIs
Publication statusPublished - 15 Nov 2015

Cite this