Rare variant contribution to the heritability of coronary artery disease

NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium, Ron Do*

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

3 Downloads (Pure)

Abstract

Whole genome sequences (WGS) enable discovery of rare variants which may contribute to missing heritability of coronary artery disease (CAD). To measure their contribution, we apply the GREML-LDMS-I approach to WGS of 4949 cases and 17,494 controls of European ancestry from the NHLBI TOPMed program. We estimate CAD heritability at 34.3% assuming a prevalence of 8.2%. Ultra-rare (minor allele frequency ≤ 0.1%) variants with low linkage disequilibrium (LD) score contribute ~50% of the heritability. We also investigate CAD heritability enrichment using a diverse set of functional annotations: i) constraint; ii) predicted protein-altering impact; iii) cis-regulatory elements from a cell-specific chromatin atlas of the human coronary; and iv) annotation principal components representing a wide range of functional processes. We observe marked enrichment of CAD heritability for most functional annotations. These results reveal the predominant role of ultra-rare variants in low LD on the heritability of CAD. Moreover, they highlight several functional processes including cell type-specific regulatory mechanisms as key drivers of CAD genetic risk.

Original languageEnglish
Article number8741
JournalNature Communications
Volume15
Issue number1
Number of pages13
ISSN2041-1723
DOIs
Publication statusPublished - 2024

Bibliographical note

Publisher Copyright:
© The Author(s) 2024.

Cite this