TY - JOUR
T1 - Recurrent glioblastoma versus late posttreatment changes
T2 - diagnostic accuracy of O-(2-[18F]fluoroethyl)-L-tyrosine positron emission tomography (18F-FET PET)
AU - Bashir, Asma
AU - Mathilde Jacobsen, Sofie
AU - Mølby Henriksen, Otto
AU - Broholm, Helle
AU - Urup, Thomas
AU - Grunnet, Kirsten
AU - Andrée Larsen, Vibeke
AU - Møller, Søren
AU - Skjøth-Rasmussen, Jane
AU - Poulsen, Hans Skovgaard
AU - Law, Ian
PY - 2019
Y1 - 2019
N2 - BACKGROUND: Diagnostic accuracy in previous studies of O-(2-[18F]-fluoroethyl)-L-tyrosine (18F-FET) PET in patients with suspected recurrent glioma may be influenced by prolonged dynamic PET acquisitions, heterogeneous populations, different non-standard-of-care therapies, and PET scans performed at different time points post radiotherapy. We investigated the diagnostic accuracy of a 20-minute 18F-FET PET scan in MRI-suspected recurrent glioblastoma 6 months after standard radiotherapy and its ability to prognosticate overall survival (OS).METHODS: In total, 146 glioblastoma patients with 168 18F-FET PET scans were reviewed retrospectively. Patients with MRI responses to bevacizumab or undergoing re-irradiation or immunotherapy after 18F-FET PET were excluded. Maximum and mean tumor-to-background ratios (TBRmax, TBRmean) and biological tumor volume (BTV) were recorded and verified by histopathology or clinical/radiological follow-up. Thresholds of 18F-FET parameters were determined by receiver operating characteristic (ROC) analysis. Prognostic factors were investigated in Cox proportional hazards models.RESULTS: Surgery was performed after 104 18F-FET PET scans, while clinical/radiological surveillance was used following 64, identifying 152 glioblastoma recurrences and 16 posttreatment changes. ROC analysis yielded thresholds of 2.0 for TBRmax, 1.8 for TBRmean, and 0.55 cm3 for BTV in differentiating recurrent glioblastoma from posttreatment changes with the best performance of TBRmax (sensitivity 99%, specificity 94%; P < 0.0001) followed by BTV (sensitivity 98%, specificity 94%; P < 0.0001). Using these thresholds, 166 18F-FET PET scans were correctly classified. Increasing BTV was associated with shorter OS (P < 0.0001).CONCLUSION: A 20-minute 18F-FET PET scan is a powerful tool to distinguish posttreatment changes from recurrent glioblastoma 6-month postradiotherapy, and predicts OS.
AB - BACKGROUND: Diagnostic accuracy in previous studies of O-(2-[18F]-fluoroethyl)-L-tyrosine (18F-FET) PET in patients with suspected recurrent glioma may be influenced by prolonged dynamic PET acquisitions, heterogeneous populations, different non-standard-of-care therapies, and PET scans performed at different time points post radiotherapy. We investigated the diagnostic accuracy of a 20-minute 18F-FET PET scan in MRI-suspected recurrent glioblastoma 6 months after standard radiotherapy and its ability to prognosticate overall survival (OS).METHODS: In total, 146 glioblastoma patients with 168 18F-FET PET scans were reviewed retrospectively. Patients with MRI responses to bevacizumab or undergoing re-irradiation or immunotherapy after 18F-FET PET were excluded. Maximum and mean tumor-to-background ratios (TBRmax, TBRmean) and biological tumor volume (BTV) were recorded and verified by histopathology or clinical/radiological follow-up. Thresholds of 18F-FET parameters were determined by receiver operating characteristic (ROC) analysis. Prognostic factors were investigated in Cox proportional hazards models.RESULTS: Surgery was performed after 104 18F-FET PET scans, while clinical/radiological surveillance was used following 64, identifying 152 glioblastoma recurrences and 16 posttreatment changes. ROC analysis yielded thresholds of 2.0 for TBRmax, 1.8 for TBRmean, and 0.55 cm3 for BTV in differentiating recurrent glioblastoma from posttreatment changes with the best performance of TBRmax (sensitivity 99%, specificity 94%; P < 0.0001) followed by BTV (sensitivity 98%, specificity 94%; P < 0.0001). Using these thresholds, 166 18F-FET PET scans were correctly classified. Increasing BTV was associated with shorter OS (P < 0.0001).CONCLUSION: A 20-minute 18F-FET PET scan is a powerful tool to distinguish posttreatment changes from recurrent glioblastoma 6-month postradiotherapy, and predicts OS.
U2 - 10.1093/neuonc/noz166
DO - 10.1093/neuonc/noz166
M3 - Journal article
C2 - 31618420
VL - 21
SP - 1595
EP - 1606
JO - Neuro-Oncology
JF - Neuro-Oncology
SN - 1522-8517
IS - 12
ER -