TY - JOUR
T1 - Recurrent requirement for the m6A-ECT2/ECT3/ECT4 axis in the control of cell proliferation during plant organogenesis
AU - Arribas-Hernández, Laura
AU - Simonini, Sara
AU - Hansen, Mathias Henning
AU - Botterweg Paredes, Esther
AU - Bressendorff, Simon
AU - Dong, Yang
AU - Østergaard, Lars
AU - Brodersen, Peter
PY - 2020
Y1 - 2020
N2 - mRNA methylation at the N6-position of adenosine (m6A) enables multiple layers of post-transcriptional gene control, often via RNA-binding proteins that use a YT521-B homology (YTH) domain for specific m6A recognition. In Arabidopsis, normal leaf morphogenesis and rate of leaf formation require m6A and the YTH-domain proteins ECT2, ECT3 and ECT4. In this study, we show that ect2/ect3 and ect2/ect3/ect4 mutants also exhibit slow root and stem growth, slow flower formation, defective directionality of root growth, and aberrant flower and fruit morphology. In all cases, the m6A-binding site of ECT proteins is required for in vivo function. We also demonstrate that both m6A methyltransferase mutants and ect2/ect3/ect4 exhibit aberrant floral phyllotaxis. Consistent with the delayed organogenesis phenotypes, we observe particularly high expression of ECT2, ECT3 and ECT4 in rapidly dividing cells of organ primordia. Accordingly, ect2/ect3/ect4 mutants exhibit decreased rates of cell division in leaf and vascular primordia. Thus, the m6A-ECT2/ECT3/ECT4 axis is employed as a recurrent module to stimulate plant organogenesis, at least in part by enabling rapid cellular proliferation.
AB - mRNA methylation at the N6-position of adenosine (m6A) enables multiple layers of post-transcriptional gene control, often via RNA-binding proteins that use a YT521-B homology (YTH) domain for specific m6A recognition. In Arabidopsis, normal leaf morphogenesis and rate of leaf formation require m6A and the YTH-domain proteins ECT2, ECT3 and ECT4. In this study, we show that ect2/ect3 and ect2/ect3/ect4 mutants also exhibit slow root and stem growth, slow flower formation, defective directionality of root growth, and aberrant flower and fruit morphology. In all cases, the m6A-binding site of ECT proteins is required for in vivo function. We also demonstrate that both m6A methyltransferase mutants and ect2/ect3/ect4 exhibit aberrant floral phyllotaxis. Consistent with the delayed organogenesis phenotypes, we observe particularly high expression of ECT2, ECT3 and ECT4 in rapidly dividing cells of organ primordia. Accordingly, ect2/ect3/ect4 mutants exhibit decreased rates of cell division in leaf and vascular primordia. Thus, the m6A-ECT2/ECT3/ECT4 axis is employed as a recurrent module to stimulate plant organogenesis, at least in part by enabling rapid cellular proliferation.
KW - ECT2
KW - ECT3
KW - ECT4
KW - m6A
KW - Plant organogenesis
KW - YTH domain
U2 - 10.1242/dev.189134
DO - 10.1242/dev.189134
M3 - Journal article
C2 - 32611605
AN - SCOPUS:85088680904
VL - 147
JO - Development
JF - Development
SN - 0950-1991
IS - 14
M1 - dev189134
ER -