TY - JOUR
T1 - Routes for drug translocation across the blood-brain barrier
T2 - Exploiting peptides as delivery vectors
AU - Kristensen, Mie
AU - Brodin, Birger
N1 - Copyright © 2017. Published by Elsevier Inc.
PY - 2017/9
Y1 - 2017/9
N2 - A number of potent drugs for the treatment of brain diseases are available. However, in order for them to reach their target site of action, they must pass the blood-brain barrier (BBB). The capillary endothelium comprises the major barrier of the BBB and allows only passive permeation of some small lipophilic molecules. Brain delivery of the larger biopharmaceuticals, which today includes an increasing number of novel drug entities, is therefore restricted; both due to their molecular size and their hydrophilic nature. Thus, the development of novel drug entities intended for the treatment of brain diseases such as neurodegenerative diseases or brain cancers, require a delivery strategy for overcoming the BBB before reaching its final target within the brain. Peptide-based delivery vectors is an emerging tool as shuttles for drug delivery across the BBB and one may explore receptor-mediated transcytosis, adsorptive-mediated transcytosis, and the paracellular route. The latter, however, being controversial due to the risk of co-delivery of blood-borne potential harmful substances. On the other hand a number of studies report on drug delivery across the BBB exploiting receptor-mediated transcytosis and adsorptive-mediated transcytosis, indicating that peptides and peptide vectors may be of use in a central nervous system (CNS) delivery context.
AB - A number of potent drugs for the treatment of brain diseases are available. However, in order for them to reach their target site of action, they must pass the blood-brain barrier (BBB). The capillary endothelium comprises the major barrier of the BBB and allows only passive permeation of some small lipophilic molecules. Brain delivery of the larger biopharmaceuticals, which today includes an increasing number of novel drug entities, is therefore restricted; both due to their molecular size and their hydrophilic nature. Thus, the development of novel drug entities intended for the treatment of brain diseases such as neurodegenerative diseases or brain cancers, require a delivery strategy for overcoming the BBB before reaching its final target within the brain. Peptide-based delivery vectors is an emerging tool as shuttles for drug delivery across the BBB and one may explore receptor-mediated transcytosis, adsorptive-mediated transcytosis, and the paracellular route. The latter, however, being controversial due to the risk of co-delivery of blood-borne potential harmful substances. On the other hand a number of studies report on drug delivery across the BBB exploiting receptor-mediated transcytosis and adsorptive-mediated transcytosis, indicating that peptides and peptide vectors may be of use in a central nervous system (CNS) delivery context.
KW - Journal Article
KW - Review
U2 - 10.1016/j.xphs.2017.04.080
DO - 10.1016/j.xphs.2017.04.080
M3 - Review
C2 - 28501469
VL - 106
SP - 2326
EP - 2334
JO - Journal of Pharmaceutical Sciences
JF - Journal of Pharmaceutical Sciences
SN - 0022-3549
IS - 9
ER -